Magnetic, Antiferroelectric-like Behavior and Resistance Switching Properties in BiFeO3-CaMnO3 Polycrystalline Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructural and Structural Investigation
3.2. Magnetic Investigations
3.3. Dielectric and Ferroelectric Investigation
3.4. Resisting Switching Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bichurin, M.I. Short introduction to the proceedings of the 3 RD international conference on magnetoelectric interaction phenomena in crystals, MEIPIC-3. Ferroelectrics 1997, 204, xvii–xx. [Google Scholar] [CrossRef]
- Schmid, H. Introduction to the proceedings of the 2nd international conference on magnetoelectric interaction phenomena in crystals, MEIPIC-2. Ferroelectrics 1994, 161, 1–28. [Google Scholar] [CrossRef]
- Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef]
- Smith, R.T.; Achenbach, G.D.; Gerson, R.; James, W.J. Dielectric Properties of Solid Solutions of BiFeO3 with Pb(Ti, Zr) O3 at High Temperature and High Frequency. J. Appl. Phys. 1968, 39, 70–74. [Google Scholar] [CrossRef]
- Moreau, J.M.; Michel, C.; Gerson, R.; James, W.J. Ferroelectric BiFeO3 X-ray and neutron diffraction study. J. Phys. Chem. Solids 1971, 32, 1315–1320. [Google Scholar] [CrossRef]
- Lottermoser, T.; Lonkai, T.; Amann, U.; Hohlwein, D.; Ihringer, J.; Fiebig, M. Magnetic phase control by an electric field. Nature 2004, 430, 541–544. [Google Scholar] [CrossRef]
- Sando, D.; Barthélémy, A.; Bibes, M. BiFeO3 epitaxial thin films and devices: Past, present and future. J. Phys. Condens. Matter 2014, 26, 473201. [Google Scholar] [CrossRef]
- Wang, Y.; Nan, C.-W. Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films. Appl. Phys. Lett. 2006, 89, 052903. [Google Scholar] [CrossRef]
- Lahmar, A.; Zhao, K.; Habouti, S.; Dietze, M.; Solterbeck, C.-H.; Es-Souni, M. Off-stoichiometry effects on BiFeO3 thin films. Solid State Ion. 2011, 202, 1–5. [Google Scholar] [CrossRef]
- Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U.V.; et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef]
- Qi, X.; Dho, J.; Blamire, M.; Jia, Q.; Lee, J.-S.; Foltyn, S.; MacManus-Driscoll, J.L. Epitaxial growth of BiFeO3 thin films by LPE and sol–Gel methods. J. Magn. Magn. Mater. 2004, 283, 415–421. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, H.; Du, G.; Zhang, J.; Yao, K. Electric properties of BiFeO3 films deposited on LaNiO3 by sol-gel process. J. Appl. Phys. 2006, 100, 044110. [Google Scholar] [CrossRef]
- Eerenstein, W.; Morrison, F.D.; Sher, F.; Prieto, J.L.; Attfield, J.P.; Scott, J.F.; Mathur, N.D. Experimental difficulties and artefacts in multiferroic and magnetoelectric thin films of BiFeO3, Bi0.6Tb0.3La0.1FeO3 and BiMnO3. Philos. Mag. Lett. 2007, 87, 249–257. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z.; Li, X.; Li, X.; Yao, K. Bi1−xLaxFeO3 films on LaNiO3 bottom electrode by the sol–Gel process. J. Phys. Appl. Phys. 2007, 40, 242–246. [Google Scholar] [CrossRef]
- Singh, S.K.; Ishiwara, H.; Maruyama, K. Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition. Appl. Phys. Lett. 2006, 88, 262908. [Google Scholar] [CrossRef]
- Shannigrahi, S.R.; Huang, A.; Tripathy, D.; Adeyeye, A.O. Effect of Sc substitution on the structure, electrical, and magnetic properties of multiferroic BiFeO3 thin films grown by a sol–Gel process. J. Magn. Magn. Mater. 2008, 20, 2215–2220. [Google Scholar] [CrossRef]
- Uchida, H.; Ueno, R.; Funakubo, H.; Koda, S. Crystal structure and ferroelectric properties of rare-earth substituted BiFeO3 thin films. J. Appl. Phys. 2006, 100, 014106. [Google Scholar] [CrossRef]
- Yuan, G.L.; Or, S.W. Multiferroicity in polarized single-phase Bi0.875Sm0.125FeO3 ceramics. J. Appl. Phys. 2006, 100, 024109. [Google Scholar] [CrossRef]
- Azuma, M.; Kanda, H.; Belik, A.A.; Shimakawa, Y.; Takano, M. Magnetic and structural properties of BiFe1−xMnxO3. J. Magn. Magn. Mater. 2007, 310, 1177–1179. [Google Scholar] [CrossRef]
- Chung, C.-F.; Lin, J.-P.; Wu, J.-M. Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO3 films. Appl. Phys. Lett. 2006, 88, 242909. [Google Scholar] [CrossRef]
- Fanggao, C.; Guilin, S.; Kun, F.; Ping, Q.; Qijun, Z. Effect of Gadolinium Substitution on Dielectric Properties of Bismuth Ferrite. J. Rare Earths 2006, 24, 273–276. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, S.S.; Kim, W.-J.; Bhalla, A.S.; Guo, R. Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl. Phys. Lett. 2006, 88, 132901. [Google Scholar] [CrossRef]
- Kan, D.; Pálová, L.; Anbusathaiah, V.; Cheng, C.J.; Fujino, S.; Nagarajan, V.; Rabe, K.M.; Takeuchi, I. Universal Behavior and Electric-Field-Induced Structural Transition in Rare-Earth-Substituted BiFeO3. Adv. Funct. Mater. 2010, 20, 1108–1115. [Google Scholar] [CrossRef]
- Kan, D.; Cheng, C.-J.; Nagarajan, V.; Takeuchi, I. Composition and temperature-induced structural evolution in La, Sm, and Dy substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. J. Appl. Phys. 2011, 110, 014106. [Google Scholar] [CrossRef]
- Cheng, C.-J.; Kan, D.; Lim, S.-H.; McKenzie, W.R.; Munroe, P.R.; Salamanca-Riba, L.G.; Withers, R.L.; Takeuchi, I.; Nagarajan, V. Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-doped BiFeO3 thin films. Phys. Rev. B 2009, 80, 014109. [Google Scholar] [CrossRef]
- Shuai, Y.; Zhou, S.; Bürger, D.; Helm, M.; Schmidt, H. Nonvolatile bipolar resistive switching in Au/BiFeO3/Pt. J. Appl. Phys. 2011, 109, 124117. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H.; Ruan, K.; Shi, W. Annealing effect on the bipolar resistive switching behaviors of BiFeO3 thin films on LaNiO3-buffered Si substrates. J. Alloys Compd. 2012, 529, 108–112. [Google Scholar] [CrossRef]
- Yang, C.-H.; Seidel, J.; Kim, S.Y.; Rossen, P.B.; Yu, P.; Gajek, M.; Chu, Y.H.; Martin, L.W.; Holcomb, M.B.; He, Q.; et al. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 2009, 8, 485–493. [Google Scholar] [CrossRef]
- Li, M.; Zhuge, F.; Zhu, X.; Yin, K.; Wang, J.; Liu, Y.; He, C.; Chen, B.; Li, R.-W. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. Nanotechnology 2010, 21, 425202. [Google Scholar] [CrossRef]
- Lahmar, A.; Habouti, S.; Dietze, M.; Solterbeck, C.-H.; Es-Souni, M. Effects of rare earth manganites on structural, ferroelectric, and magnetic properties of BiFeO3 thin films. Appl. Phys. Lett. 2009, 94, 012903. [Google Scholar] [CrossRef]
- Lahmar, A.; Habouti, S.; Solterbeck, C.-H.; Es-Souni, M.; Elouadi, B. Correlation between structure, dielectric, and ferroelectric properties in BiFeO3–LaMnO3 solid solution thin films. J. Appl. Phys. 2009, 105, 014111. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, S.; Luo, Y.; Yuan, G.; Liu, J.; Yin, J.; Liu, Z. Coexistence of unipolar and bipolar resistive switching in BiFeO3 and Bi0.8Ca0.2FeO3 films. J. Appl. Phys. 2012, 111, 104103. [Google Scholar] [CrossRef]
- Jeong, D.S.; Thomas, R.; Katiyar, R.S.; Scott, J.F.; Kohlstedt, H.; Petraru, A.; Hwang, C.S. Emerging memories: Resistive switching mechanisms and current status. Rep. Prog. Phys. 2012, 75, 076502. [Google Scholar] [CrossRef]
- Rubi, D.; Marlasca, F.G.; Reinoso, M.; Bonville, P.; Levy, P. Magnetism and electrode dependant resistive switching in Ca-doped ceramic bismuth ferrite. Mater. Sci. Eng. B 2012, 177, 471–475. [Google Scholar] [CrossRef]
- Luo, J.M.; Lin, S.P.; Zheng, Y.; Wang, B. Nonpolar resistive switching in Mn-doped BiFeO3 thin films by chemical solution deposition. Appl. Phys. Lett. 2012, 101, 062902. [Google Scholar] [CrossRef]
- Kartopu, G.; Lahmar, A.; Habouti, S.; Solterbeck, C.-L.; Elouadi, B.; Es-Souni, M. Observation of structural transitions and Jahn–Teller distortion in LaMnO3-doped BiFeO3 thin films. Appl. Phys. Lett. 2008, 92, 151910. [Google Scholar] [CrossRef]
- Lahmar, A.; Es-Souni, M. Sequence of structural transitions in BiFeO3–RMnO3 thin films (R=Rare earth). Ceram. Int. 2015, 41, 5721–5726. [Google Scholar] [CrossRef]
- Chauhan, S.; Kumar, M.; Chhoker, S.; Katyal, S.C.; Singh, M.; Singh, M. Substitution driven structural and magnetic transformation in Ca-doped BiFeO3 nanoparticles. RSC Adv. 2016, 6, 43080–43090. [Google Scholar] [CrossRef]
- Ulyanov, A.N.; Yang, D.S.; Savilov, S.V. Negative magnetization, shielding current effect and divalent manganese in CaMn1-xTaxO3 manganites. J. Alloys Compd. 2023, 967, 171686. [Google Scholar] [CrossRef]
- Bharamagoudar, R.; Angadi, V.J.; Shivaraja, I.; Angadi, B.; Mondal, R.; Patil, A.S.; Patil, S.; Pattar, V.; Raghu, S.; Matteppanavar, S. Evidence of Weak Ferromagnetism, Space Charge Polarization, and Metal to Insulator Transition in Dy-Doped CaMnO3. J. Supercond. Nov. Magn. 2021, 34, 837–844. [Google Scholar] [CrossRef]
- Bharamagoudar, R.; Matteppanavar, S.; Patil, A.S.; Pattar, V.; V, J.A.; Manjunatha, K. Effect of Dy on structural and low temperature magnetic properties of Ca0.7Dy0.3MnO3. Chem. Data Collect. 2019, 24, 100288. [Google Scholar] [CrossRef]
- MacChesney, J.B.; Williams, H.J.; Potter, J.F.; Sherwood, R.C. Magnetic Study of the Manganate Phases: CaMnO3, Ca4Mn3O10, Ca3Mn2O7, Ca2MnO4. Phys. Rev. 1967, 164, 779–785. [Google Scholar] [CrossRef]
- Anderson, P.W. New Approach to the Theory of Superexchange Interactions. Phys. Rev. 1959, 115, 2–13. [Google Scholar] [CrossRef]
- Zeng, Z.; Greenblatt, M.; Croft, M. Large magnetoresistance in antiferromagnetic CaMnO32–δ. Phys. Rev. B 1999, 59, 8784–8788. [Google Scholar] [CrossRef]
- Lahmar, A. Multiferroic properties and frequency dependent coercive field in BiFeO3-LaMn0.5Co0.5O3 thin films. J. Magn. Magn. Mater. 2017, 439, 30–37. [Google Scholar] [CrossRef]
- Dong, H.; Zheng, X.J.; Li, W.; Gong, Y.Q.; Peng, J.F.; Zhu, Z. The dielectric relaxation behavior of (Na0.82K0.18)0.5Bi0.5TiO3 ferroelectric thin film. J. Appl. Phys. 2011, 110, 124109. [Google Scholar] [CrossRef]
- Wang, S.W.; Wang, H.; Wu, X.; Shang, S.; Wang, M.; Li, Z.; Lu, W. Rapid thermal processing of Bi2Ti2O7 thin films grown by chemical solution decomposition. J. Cryst. Growth 2001, 224, 323–326. [Google Scholar] [CrossRef]
- Li, Y.; Cao, W.; Yuan, J.; Wang, D.; Cao, M. Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic–dielectric synergy. J. Mater. Chem. C 2015, 3, 9276–9282. [Google Scholar] [CrossRef]
- Wendari, T.P.; Arief, S.; Mufti, N.; Blake, G.R.; Baas, J.; Suendo, V.; Prasetyo, A.; Insani, A.; Zulhadjri, Z. Lead-Free Aurivillius Phase Bi 2 LaNb1.5Mn0.5O9: Structure, Ferroelectric, Magnetic, and Magnetodielectric Effects. Inorg. Chem. 2022, 61, 8644–8652. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, Z.; Meng, J.; Lu, H.; Zhang, D.W.; Jiang, A. Ferroelectric polarization and defect-dipole switching in an epitaxial (111) BiFeO3 thin film. J. Appl. Phys. 2015, 117, 204103. [Google Scholar] [CrossRef]
- Folkman, C.M.; Baek, S.H.; Nelson, C.T.; Jang, H.W.; Tybell, T.; Pan, X.Q.; Eom, C.B. Study of defect-dipoles in an epitaxial ferroelectric thin film. Appl. Phys. Lett. 2010, 96, 052903. [Google Scholar] [CrossRef]
- Xu, B.; Paillard, C.; Dkhil, B.; Bellaiche, L. Pinched hysteresis loop in defect-free ferroelectric materials. Phys. Rev. B 2016, 94, 140101. [Google Scholar] [CrossRef]
- Choi, T.; Lee, S.; Choi, Y.J.; Kiryukhin, V.; Cheong, S.-W. Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3. Science 2009, 324, 63–66. [Google Scholar] [CrossRef]
- Lee, D.; Baek, S.H.; Kim, T.H.; Yoon, J.-G.; Folkman, C.M.; Eom, C.B.; Noh, T.W. Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects. Phys. Rev. B 2011, 84, 125305. [Google Scholar] [CrossRef]
- Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840. [Google Scholar] [CrossRef]
- Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-Based Resistive Switching Memories—Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater. 2009, 21, 2632–2663. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahmar, A.; Zidani, J.; Belhadi, J.; Alaoui, I.H.; Musleh, H.; Asad, J.; Al Dahoudi, N.; El Marssi, M. Magnetic, Antiferroelectric-like Behavior and Resistance Switching Properties in BiFeO3-CaMnO3 Polycrystalline Thin Films. Materials 2023, 16, 7392. https://doi.org/10.3390/ma16237392
Lahmar A, Zidani J, Belhadi J, Alaoui IH, Musleh H, Asad J, Al Dahoudi N, El Marssi M. Magnetic, Antiferroelectric-like Behavior and Resistance Switching Properties in BiFeO3-CaMnO3 Polycrystalline Thin Films. Materials. 2023; 16(23):7392. https://doi.org/10.3390/ma16237392
Chicago/Turabian StyleLahmar, Abdelilah, Jacem Zidani, Jamal Belhadi, Ilham Hamdi Alaoui, Hussam Musleh, Jehad Asad, Naji Al Dahoudi, and Mimoun El Marssi. 2023. "Magnetic, Antiferroelectric-like Behavior and Resistance Switching Properties in BiFeO3-CaMnO3 Polycrystalline Thin Films" Materials 16, no. 23: 7392. https://doi.org/10.3390/ma16237392
APA StyleLahmar, A., Zidani, J., Belhadi, J., Alaoui, I. H., Musleh, H., Asad, J., Al Dahoudi, N., & El Marssi, M. (2023). Magnetic, Antiferroelectric-like Behavior and Resistance Switching Properties in BiFeO3-CaMnO3 Polycrystalline Thin Films. Materials, 16(23), 7392. https://doi.org/10.3390/ma16237392