Effects of Pore–Crack Relative Location on Crack Propagation in Porous Granite Based on the Phase-Field Regularized Cohesion Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Governing Equations
2.2. Constitutive Theory
2.3. Optimal Characteristic Functions
2.4. Phase-Field Models for Brittle Fractures
2.5. Phase-Field Regularized Cohesive Zone Model
3. Simulation of Rock Fractures and Experimental Verification
3.1. SCB Monotonic Fracture Test
3.2. Granite Tensile Test
4. Results and Discussion
4.1. Effects of Pore Size (r)
4.2. Effect of the Pore–Crack Distance (D)
4.3. Effect of Double Pores on Crack Extension
4.3.1. Effect of Different Deflection Angles on Crack Extension
4.3.2. Effect of Equal Deflection Angles on Crack Extension
5. Conclusions
- In a tensile model with an initial crack and two pores (with equal pore radii but different crack–pore distances (Ds)), the crack would deflect towards the pore with the smaller pore distance.
- In a tensile model with an initial crack and two pores (with equal crack–pore distances (Ds) but different pore radii), the crack would deflect towards the pore with larger pore radii.
- In a tensile model with an initial crack and two pores (with different crack–pore distances (Ds) and pore radii), the crack would deflect towards the pore with the smaller D/r ratio.
Expectation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rezanezhad, M.; Lajevardi, S.A.; Karimpouli, S. Effects of pore-crack relative location on crack propagation in porous media using XFEM method. Theor. Appl. Fract. Mech. 2019, 103, 102241. [Google Scholar] [CrossRef]
- Basu, A.; Mishra, D.A. A method for estimating crack-initiation stress of rock materials by porosity. J. Geol. Soc. India 2014, 84, 397–405. [Google Scholar] [CrossRef]
- Verma, A.K.; Saini, M.S.; Singh, T.N.; Dutt, A.; Bajpai, R.K. Effect of excavation stages on stress and pore pressure changes for an underground nuclear repository. Arab. J. Geosci. 2013, 6, 635–645. [Google Scholar] [CrossRef]
- Chang, X.; Wang, S.; Li, Z.; Chang, F. Cracking behavior of concrete/rock bi-material specimens containing a parallel flaw pair under compression. Constr. Build. Mater. 2022, 360, 129440. [Google Scholar] [CrossRef]
- Lisjak, A.; Kaifosh, P.; He, L.; Tatone, B.S.A.; Mahabadi, O.K.; Grasselli, G. A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses. Comput. Geotech. 2017, 81, 1–18. [Google Scholar] [CrossRef]
- Jia, H.; Ding, S.; Zi, F.; Dong, Y.; Shen, Y. Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks. CATENA 2020, 195, 104915. [Google Scholar] [CrossRef]
- Wu, Z.; Wong, L.N.Y. Frictional crack initiation and propagation analysis using the numerical manifold method. Comput. Geotech. 2012, 39, 38–53. [Google Scholar] [CrossRef]
- Haeri, H.; Sarfarazi, V.; Ebneabbasi, P.; Nazari Maram, A.; Shahbazian, A.; Fatehi Marji, M.; Mohamadi, A.R. XFEM and experimental simulation of failure mechanism of non-persistent joints in mortar under compression. Constr. Build. Mater. 2020, 236, 117500. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, S.; Deng, H. Peridynamic model of deformation and failure for rock material under the coupling effect of multi-physical fields. Theor. Appl. Fract. Mech. 2023, 125, 103912. [Google Scholar] [CrossRef]
- Mu, D.; Wen, A.; Zhu, D.; Tang, A.; Nie, Z.; Wang, Z. An improved smoothed particle hydrodynamics method for simulating crack propagation and coalescence in brittle fracture of rock materials. Theor. Appl. Fract. Mech. 2022, 119, 103355. [Google Scholar] [CrossRef]
- Cen, D.; Liu, C.; Liu, C.; Huang, D. Crack propagation mechanism of single- and double-flawed rock specimens under tension–shear stress condition. Arab. J. Geosci. 2022, 15, 1062. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Q.-Z.; Ni, T.; Vazic, B.; Newell, P.; Bordas, S.P.A. An extended peridynamic model equipped with a new bond-breakage criterion for mixed-mode fracture in rock-like materials. Comput. Methods Appl. Mech. Eng. 2023, 411, 116016. [Google Scholar] [CrossRef]
- Mohtarami, E.; Baghbanan, A.; Eftekhari, M.; Hashemolhosseini, H. Investigating of chemical effects on rock fracturing using extended finite element method. Theor. Appl. Fract. Mech. 2017, 89, 110–126. [Google Scholar] [CrossRef]
- Li, P.; Li, W.; Fan, H.; Wang, Q.; Zhou, K. A phase-field framework for brittle fracture in quasi-crystals. Int. J. Solids Struct. 2023, 279, 112385. [Google Scholar] [CrossRef]
- Francfort, G.A.; Marigo, J.-J. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 1998, 46, 1319–1342. [Google Scholar] [CrossRef]
- Bourdin, B.; Francfort, G.A.; Marigo, J.-J. The Variational Approach to Fracture. J. Elast. 2008, 91, 5–148. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Nguyen, V.P. A length scale insensitive phase-field damage model for brittle fracture. J. Mech. Phys. Solids 2018, 119, 20–42. [Google Scholar] [CrossRef]
- Duan, J.; Zhou, S.; Xia, C.; Xu, Y. A dynamic phase field model for predicting rock fracture diversity under impact loading. Int. J. Impact Eng. 2023, 171, 104376. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Peng, C.; Wu, W. A thermodynamically consistent phase field model for mixed-mode fracture in rock-like materials. Comput. Methods Appl. Mech. Eng. 2022, 392, 114642. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Cao, Y.; Liu, S.; Zeng, T.; Shao, J. A hybrid phase-field method for modeling mixed-mode fractures in elastoplastic rock-like materials. Comput. Geotech. 2023, 160, 105523. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, S.; Xia, C.; Hu, Y. A new phase field model for mixed-mode brittle fractures in rocks modified from triple shear energy criterion. Acta Geotech. 2022, 17, 5613–5637. [Google Scholar] [CrossRef]
- Wu, J.-Y. A geometrically regularized gradient-damage model with energetic equivalence. Comput. Methods Appl. Mech. Eng. 2018, 328, 612–637. [Google Scholar] [CrossRef]
- Wu, J.-Y. Robust numerical implementation of non-standard phase-field damage models for failure in solids. Comput. Methods Appl. Mech. Eng. 2018, 340, 767–797. [Google Scholar] [CrossRef]
- Feng, D.-C.; Wu, J.-Y. Phase-field regularized cohesive zone model (CZM) and size effect of concrete. Eng. Fract. Mech. 2018, 197, 66–79. [Google Scholar] [CrossRef]
- Borden, M.J.; Hughes, T.J.R.; Landis, C.M.; Anvari, A.; Lee, I.J. A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput. Methods Appl. Mech. Eng. 2016, 312, 130–166. [Google Scholar] [CrossRef]
- Pham, K.H.; Ravi-Chandar, K. The formation and growth of echelon cracks in brittle materials. Int. J. Fract. 2017, 206, 229–244. [Google Scholar] [CrossRef]
- Tanné, E.; Li, T.; Bourdin, B.; Marigo, J.-J.; Maurini, C. Crack nucleation in variational phase-field models of brittle fracture. J. Mech. Phys. Solids 2018, 110, 80–99. [Google Scholar] [CrossRef]
- Borden, M.J.; Verhoosel, C.V.; Scott, M.A.; Hughes, T.J.R.; Landis, C.M. A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 2012, 217–220, 77–95. [Google Scholar] [CrossRef]
- Schlüter, A.; Willenbücher, A.; Kuhn, C.; Müller, R. Phase field approximation of dynamic brittle fracture. Comput. Mech. 2014, 54, 1141–1161. [Google Scholar] [CrossRef]
- Lee, S.; Wheeler, M.F.; Wick, T. Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. Comput. Methods Appl. Mech. Eng. 2016, 305, 111–132. [Google Scholar] [CrossRef]
- Miehe, C.; Mauthe, S. Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media. Comput. Methods Appl. Mech. Eng. 2016, 304, 619–655. [Google Scholar] [CrossRef]
- Areias, P.; Rabczuk, T.; Msekh, M.A. Phase-field analysis of finite-strain plates and shells including element subdivision. Comput. Methods Appl. Mech. Eng. 2016, 312, 322–350. [Google Scholar] [CrossRef]
- Mandal, T.K.; Nguyen, V.P.; Wu, J.-Y. A length scale insensitive anisotropic phase field fracture model for hyperelastic composites. Int. J. Mech. Sci. 2020, 188, 105941. [Google Scholar] [CrossRef]
- Miehe, C.; Schänzel, L.-M. Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure. J. Mech. Phys. Solids 2014, 65, 93–113. [Google Scholar] [CrossRef]
- Wong, L.N.Y.; Einstein, H.H. Crack Coalescence in Molded Gypsum and Carrara Marble: Part 1. Macroscopic Observations and Interpretation. Rock Mech. Rock Eng. 2009, 42, 475–511. [Google Scholar] [CrossRef]
- Wong, L.N.Y.; Einstein, H.H. Crack Coalescence in Molded Gypsum and Carrara Marble: Part 2—Microscopic Observations and Interpretation. Rock Mech. Rock Eng. 2009, 42, 513–545. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Mandal, T.K.; Nguyen, V.P. A phase-field regularized cohesive zone model for hydrogen assisted cracking. Comput. Methods Appl. Mech. Eng. 2020, 358, 112614. [Google Scholar] [CrossRef]
- Bourdin, B.; Francfort, G.A.; Marigo, J.-J. Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 2000, 48, 797–826. [Google Scholar] [CrossRef]
- Zhang, J.; Sudo Lutif Teixeira, J.E.; Little, D.N.; Kim, Y.-R. Prediction of fatigue crack growth behavior of chemically stabilized materials using simple monotonic fracture test integrated with computational cohesive zone modeling. Compos. Part B Eng. 2020, 200, 108367. [Google Scholar] [CrossRef]
- Simone, A. Partition of unity-based discontinuous elements for interface phenomena: Computational issues. Commun. Numer. Methods Eng. 2004, 20, 465–478. [Google Scholar] [CrossRef]
- De Borst, R.; Verhoosel, C.V. Gradient damage vs phase-field approaches for fracture: Similarities and differences. Comput. Methods Appl. Mech. Eng. 2016, 312, 78–94. [Google Scholar] [CrossRef]
- Lu, G.; Chen, J. A new nonlocal macro-meso-scale consistent damage model for crack modeling of quasi-brittle materials. Comput. Methods Appl. Mech. Eng. 2020, 362, 112802. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, C.; Wei, X.; Xie, W. Experimental study on mechanical properties and failure modes of pre-existing cracks in sandstone during uniaxial tension/compression testing. Eng. Fract. Mech. 2021, 255, 107966. [Google Scholar] [CrossRef]
- Wu, J.-Y. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J. Mech. Phys. Solids 2017, 103, 72–99. [Google Scholar] [CrossRef]
- Mandal, T.K.; Nguyen, V.P.; Wu, J.-Y. Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture. Eng. Fract. Mech. 2019, 217, 106532. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Nguyen, V.P.; Zhou, H.; Huang, Y. A variationally consistent phase-field anisotropic damage model for fracture. Comput. Methods Appl. Mech. Eng. 2020, 358, 112629. [Google Scholar] [CrossRef]
- Loew, P.J.; Peters, B.; Beex, L.A.A. Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation. Mech. Mater. 2020, 142, 103282. [Google Scholar] [CrossRef]
- Sarac, B.; Schroers, J. Designing tensile ductility in metallic glasses. Nat. Commun. 2013, 4, 2158. [Google Scholar] [CrossRef]
- Cornelissen, G.; Marcolli, M. Graph reconstruction and quantum statistical mechanics. J. Geom. Phys. 2013, 72, 110–117. [Google Scholar] [CrossRef]
- Khalili, M.; Fahimifar, A.; Shobeiri, H. The effect of bedding planes on the bending strength of rock-like material and evaluation of the crack propagation mechanism. Theor. Appl. Fract. Mech. 2023, 127, 104061. [Google Scholar] [CrossRef]
- Wu, Y.; Xue, J.; Yu, Y.; Shi, C.; Fan, Y.; Wang, H.; Yang, J.; Gong, M.; Huang, W. Research of reflective crack in asphalt pavement using SCB specimen and XFEM: From laboratory test to numerical simulation. Constr. Build. Mater. 2023, 406, 133419. [Google Scholar] [CrossRef]
D/r | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
r | ||||||
0.4 | *1 | *4 | *7 | *10 | *13 | |
25° | 45° | 55° | 65° | 75° | ||
0.8 | *2 | *5 | *8 | *11 | *14 | |
30° | 50° | 60° | 70° | 75° | ||
1.2 | *3 | *6 | *9 | *12 | *15 | |
35° | 55° | 65° | 70° | 80° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Shen, Q. Effects of Pore–Crack Relative Location on Crack Propagation in Porous Granite Based on the Phase-Field Regularized Cohesion Model. Materials 2023, 16, 7474. https://doi.org/10.3390/ma16237474
Zhang S, Shen Q. Effects of Pore–Crack Relative Location on Crack Propagation in Porous Granite Based on the Phase-Field Regularized Cohesion Model. Materials. 2023; 16(23):7474. https://doi.org/10.3390/ma16237474
Chicago/Turabian StyleZhang, Shiyi, and Qiang Shen. 2023. "Effects of Pore–Crack Relative Location on Crack Propagation in Porous Granite Based on the Phase-Field Regularized Cohesion Model" Materials 16, no. 23: 7474. https://doi.org/10.3390/ma16237474
APA StyleZhang, S., & Shen, Q. (2023). Effects of Pore–Crack Relative Location on Crack Propagation in Porous Granite Based on the Phase-Field Regularized Cohesion Model. Materials, 16(23), 7474. https://doi.org/10.3390/ma16237474