Stress Triaxiality in Anisotropic Metal Sheets—Definition and Experimental Acquisition for Numerical Damage Prediction
Abstract
:1. Introduction
2. Theory—Yield Model-Dependent Analytical Solutions for Triaxiality
2.1. Von Mises Yield Criterion
2.2. Hill48 Yield Criterion
2.3. Barlat89 Yield Criterion
3. Experiment—Tensile Tests with DIC
4. Results
4.1. Yield Criterion-Dependent η-Relations for DP780 and Zirlo
4.2. Uniaxial Tension Specimens (UTx)
4.3. Notched Specimens (Nx)
4.4. Shear Specimens (SHx)
5. Discussion
- The choice of the yield criterion can have a strong influence on the resulting triaxiality for anisotropic materials. This influence varies further with the degree of anisotropy (magnitude of and differences between r-values) and exponent m.
- The UTx case shows the risks inherent to the assumption of material isotropy: for the highly anisotropic Zirlo, the von Mises criterion gives triaxialities of ≈0.1, which is well below the theoretical value of 1/3 in the pre-critical region. Both anisotropic yield criteria, however, give values close to 1/3.
- While for the mildly anisotropic DP780, the von Mises criterion gives triaxialities comparable to Hill48, for the highly anisotropic Zirlo, differences are pronounced. Based on the von Mises criterion, the η range for the specimen geometries used in this study does not exceed [0, 0.2].
- While small for UTx and SHx specimens, differences between the Hill48 and Barlat89 yield models become significant for Nx specimens.
- Due to the high sensitivity in the β = −1 region, the analysis of the shear region can be challenging, depending on the yield criterion and exponent m.
- The material dependence of η dilutes the advantages of the TFD for anisotropic materials, i.e., the unique relationship between the η-value and a specimen type. It is more practical to provide β (or β′), as it is independent of yield criterion or anisotropy and can be measured directly.
6. Summary and Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Von Mises Yield Criterion
Appendix A.2. Hill48 Yield Criterion
Appendix A.3. Barlat89 Yield Criterion
References
- McClintock, F.A.; Kaplan, S.M.; Berg, C.A. Ductile fracture by hole growth in shear bands. Int. J. Fract. Mech. 1966, 2, 614–627. [Google Scholar] [CrossRef]
- McClintock, F.A. A Criterion for Ductile Fracture by the Growth of Holes. J. Appl. Mech. 1968, 35, 363–371. [Google Scholar] [CrossRef]
- Rice, J.R.; Tracey, D.M. On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 1969, 17, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Hancock, J.W.; Mackenzie, A.C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J. Mech. Phys. Solids 1976, 24, 147–160. [Google Scholar] [CrossRef]
- Beremin, F.M. Cavity formation from inclusions in ductile fracture of A508 steel. Metall. Trans. A 1981, 12, 723–731. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Bai, Y.; Wierzbicki, T. A new model of metal plasticity and fracture with pressure and Lode dependence. Int. J. Plast. 2008, 24, 1071–1096. [Google Scholar] [CrossRef]
- Bai, Y.; Wierzbicki, T. Application of extended Mohr–Coulomb criterion to ductile fracture. Int. J. Fract. 2010, 161, 1–20. [Google Scholar] [CrossRef]
- Ebnoether, F.; Mohr, D. Predicting ductile fracture of low carbon steel sheets: Stress-based versus mixed stress/strain-based Mohr-Coulomb model. Int. J. Solids Struct. 2013, 50, 1055–1066. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Huh, H. Prediction of ductile fracture for advanced high strength steel with a new criterion: Experiments and simulation. J. Mater. Process. Technol. 2013, 213, 1284–1302. [Google Scholar] [CrossRef]
- Lou, Y.; Yoon, J.W. Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion. Int. J. Plast. 2018, 101, 125–155. [Google Scholar] [CrossRef]
- Gurson, A.L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media. J. Eng. Mater. Technol. 1977, 99, 2. [Google Scholar] [CrossRef]
- Tvergaard, V. On localization in ductile materials containing spherical voids. Int. J. Fract. 1982, 18, 237–252. [Google Scholar] [CrossRef]
- Tvergaard, V.; Needleman, A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 1984, 32, 157–169. [Google Scholar] [CrossRef]
- Needleman, A.; Tvergaard, V. An analysis of ductile rupture in notched bars. J. Mech. Phys. Solids 1984, 32, 461–490. [Google Scholar] [CrossRef]
- Benzerga, A.A.; Besson, J. Plastic potentials for anisotropic porous solids. Eur. J. Mech. A/Solids 2001, 20, 397–434. [Google Scholar] [CrossRef]
- Keralavarma, S.M.; Benzerga, A.A. A constitutive model for plastically anisotropic solids with non-spherical voids. J. Mech. Phys. Solids 2010, 58, 874–901. [Google Scholar] [CrossRef]
- Kachanov, L.M. Rupture time under creep conditions. Int. J. Fract. 1999, 97, 11–18. [Google Scholar] [CrossRef]
- Lemaitre, J. A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. Trans. ASME 1985, 107, 83–89. [Google Scholar] [CrossRef]
- Chaboche, J.L. Damage Induced Anisotropy: On the Difficulties Associated with the Active/Passive Unilateral Condition. Int. J. Damage Mech. 1992, 1, 148–171. [Google Scholar] [CrossRef]
- Fassin, M.; Eggersmann, R.; Wulfinghoff, S.; Reese, S. Efficient algorithmic incorporation of tension compression asymmetry into an anisotropic damage model. Comput. Methods Appl. Mech. Eng. 2019, 354, 932–962. [Google Scholar] [CrossRef]
- Yan, Z.G.; Zhang, Y.; Woody Ju, J.; Chen, Q.; Zhu, H.H. An equivalent elastoplastic damage model based on micromechanics for hybrid fiber-reinforced composites under uniaxial tension. Int. J. Damage Mech. 2019, 28, 79–117. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Kattan, P.I. Fundamental aspects for characterization in continuum damage mechanics. Int. J. Damage Mech. 2019, 28, 200–218. [Google Scholar] [CrossRef]
- Badreddine, H.; Saanouni, K. On the full coupling of plastic anisotropy and anisotropic ductile damage under finite strains. Int. J. Damage Mech. 2017, 26, 1080–1123. [Google Scholar] [CrossRef]
- Neukamm, F.; Feucht, M.; Haufe, A. Consistent damage modelling in the process chain of forming to crashworthiness simulations. LS-DYNA Anwenderforum 2008, 30, 11–20. [Google Scholar]
- Bao, Y.; Wierzbicki, T. On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 2004, 46, 81–98. [Google Scholar] [CrossRef]
- Xue, L. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. Int. J. Solids Struct. 2007, 44, 5163–5181. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Zhao, H.; Li, X. New ductile fracture model for fracture prediction ranging from negative to high stress triaxiality. Int. J. Plast. 2021, 145, 103057. [Google Scholar] [CrossRef]
- Zhang, K.; Badreddine, H.; Hfaiedh, N.; Saanouni, K.; Liu, J. Enhanced CDM model accounting of stress triaxiality and Lode angle for ductile damage prediction in metal forming. Int. J. Damage Mech. 2021, 30, 260–282. [Google Scholar] [CrossRef]
- Badreddine, H.; Saanouni, K.; Nguyen, T.D. Damage anisotropy and its effect on the plastic anisotropy evolution under finite strains. Int. J. Solids Struct. 2015, 63, 11–31. [Google Scholar] [CrossRef]
- Ling, C.; Forest, S.; Besson, J.; Tanguy, B.; Latourte, F. A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals. Int. J. Solids Struct. 2018, 134, 43–69. [Google Scholar] [CrossRef]
- Holte, I.; Niordson, C.F.; Nielsen, K.L.; Tvergaard, V. Investigation of a gradient enriched Gurson-Tvergaard model for porous strain hardening materials. Eur. J. Mech. A Solids 2019, 75, 472–484. [Google Scholar] [CrossRef]
- Scherer, J.M.; Hure, J. A size-dependent ductile fracture model: Constitutive equations, numerical implementation and validation. Eur. J. Mech. A Solids 2019, 76, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.; Butcher, C.; Pathak, N.; Worswick, M.J. Failure parameter identification and validation for a dual-phase 780 steel sheet. Int. J. Solids Struct. 2017, 124, 89–107. [Google Scholar] [CrossRef]
- Bao, Y. Dependence of ductile crack formation in tensile tests on stress triaxiality, stress and strain ratios. Eng. Fract. Mech. 2005, 72, 505–522. [Google Scholar] [CrossRef]
- Kondori, B.; Benzerga, A.A. Effect of stress triaxiality on the flow and fracture of Mg alloy AZ31. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2014, 45, 3292–3307. [Google Scholar] [CrossRef]
- Kondori, B.; Madi, Y.; Besson, J.; Benzerga, A.A. Evolution of the 3D plastic anisotropy of HCP metals: Experiments and modeling. Int. J. Plast. 2018, 117, 71–92. [Google Scholar] [CrossRef]
- Roth, C.C.; Mohr, D. Ductile fracture experiments with locally proportional loading histories. Int. J. Plast. 2016, 79, 328–354. [Google Scholar] [CrossRef]
- Roth, C.C.; Mohr, D. Determining the strain to fracture for simple shear for a wide range of sheet metals. Int. J. Mech. Sci. 2018, 149, 224–240. [Google Scholar] [CrossRef]
- Kim, Y.; Zhang, S.; Grolleau, V.; Roth, C.C.; Mohr, D.; Yoon, J.W. Robust characterization of anisotropic shear fracture strains with constant triaxiality using shape optimization of torsional twin bridge specimen. CIRP Ann. 2021, 70, 211–214. [Google Scholar] [CrossRef]
- Gerke, S.; Adulyasak, P.; Brünig, M. New biaxially loaded specimens for the analysis of damage and fracture in sheet metals. Int. J. Solids Struct. 2017, 110–111, 209–218. [Google Scholar] [CrossRef]
- Kuwabara, T.; Sugawara, F. Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range. Int. J. Plast. 2013, 45, 103–118. [Google Scholar] [CrossRef]
- Barsoum, I.; Faleskog, J. Rupture mechanisms in combined tension and shear-Experiments. Int. J. Solids Struct. 2007, 44, 1768–1786. [Google Scholar] [CrossRef] [Green Version]
- Gänser, H.-P.; Atkins, A.G.; Kolednik, O.; Fischer, F.D.; Richard, O. Upsetting of Cylinders: A Comparison of Two Different Damage Indicators. J. Eng. Mater. Technol. 2001, 123, 94–99. [Google Scholar] [CrossRef]
- Basu, S.; Benzerga, A.A. On the path-dependence of the fracture locus in ductile materials: Experiments. Int. J. Solids Struct. 2015, 71, 79–90. [Google Scholar] [CrossRef]
- Cortese, L.; Nalli, F.; Rossi, M. A nonlinear model for ductile damage accumulation under multiaxial non-proportional loading conditions. Int. J. Plast. 2016, 85, 77–92. [Google Scholar] [CrossRef]
- Gerke, S.; Zistl, M.; Bhardwaj, A.; Brünig, M. Experiments with the X0-specimen on the effect of non-proportional loading paths on damage and fracture mechanisms in aluminum alloys. Int. J. Solids Struct. 2019, 163, 157–169. [Google Scholar] [CrossRef]
- Djouabi, M.; Ati, A.; Manach, P.Y. Identification strategy influence of elastoplastic behavior law parameters on Gurson–Tvergaard–Needleman damage parameters: Application to DP980 steel. Int. J. Damage Mech. 2019, 28, 427–454. [Google Scholar] [CrossRef]
- Basak, S.; Kim, C.; Jeong, W.; Jung, Y.I.; Lee, M.-G. Numerical prediction of sheared edge profiles in sheet metal trimming using ductile fracture modeling. Int. J. Mech. Sci. 2022, 219, 107109. [Google Scholar] [CrossRef]
- Jia, Y.; Bai, Y. Ductile fracture prediction for metal sheets using all-strain-based anisotropic eMMC model. Int. J. Mech. Sci. 2016, 115–116, 516–531. [Google Scholar] [CrossRef]
- Park, N.; Huh, H.; Lim, S.J.; Lou, Y.; Kang, Y.S.; Seo, M.H. Fracture-based forming limit criteria for anisotropic materials in sheet metal forming. Int. J. Plast. 2017, 96, 1–35. [Google Scholar] [CrossRef]
- Lou, Y.; Yoon, J.W. Alternative approach to model ductile fracture by incorporating anisotropic yield function. Int. J. Solids Struct. 2019, 164, 12–24. [Google Scholar] [CrossRef]
- Lou, Y.; Yoon, J.W. Anisotropic ductile fracture criterion based on linear transformation. Int. J. Plast. 2017, 93, 3–25. [Google Scholar] [CrossRef]
- Li, R.; Zhan, M.; Zheng, Z.; Zhang, H.; Cui, X.; Lv, W.; Lei, Y. A constitutive model coupling damage and material anisotropy for wide stress triaxiality. Chinese J. Aeronaut. 2020, 33, 3509–3525. [Google Scholar] [CrossRef]
- Andrade, F.; Conde, S.; Feucht, M.; Helbig, M.; Haufe, A. Estimation of Stress Triaxiality from optically measured Strain Fields. In Proceedings of the 12th European LS-DYNA Conference, Koblenz, Germany, 14–16 May 2019. [Google Scholar]
- Bhadauria, S.S.; Hora, M.S.; Pathak, K.K. Effect of stress triaxiality on yielding of anisotropic materials under plane stress condition. J. Solid Mech. 2009, 1, 226–232. [Google Scholar]
- Fleischer, M.; Borrvall, T.; Bletzinger, K. Experience from Using Recently Implemented Enhancements for Material 36 in LS-DYNA 971 Performing a Virtual Tensile Test. In Proceedings of the 6th European LS-DYNA Users Conference, Gothenburg, Sweden, 29–30 May 2007; pp. 141–152. [Google Scholar]
- Cazacu, O.; Plunkett, B.; Barlat, F. Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plast. 2006, 22, 1171–1194. [Google Scholar] [CrossRef]
- Rickhey, F.; Kim, M.; Hong, S. Gauge length and frame rate dependence of the onset of instability and the fracture limit of DP 980 sheets. Eng. Res. Express 2020, 2, 025045. [Google Scholar] [CrossRef]
- Rickhey, F.; Hong, S. Evolution of instantaneous r-values in the post-critical region and its implications on the deformation behavior. Int. J. Mech. Sci. 2021, 206, 106612. [Google Scholar] [CrossRef]
DIC System | GOM Aramis 3D Camera 6M System |
---|---|
full resolution | 6 Mpx: 2752 × 2200 [px] |
used resolution | DP780: full resolution (1 Hz) Zirlo: full resolution (25 Hz), 1376 × 1100 (44 Hz, in binning mode) |
measuring volume | length×width×depth = 150 × 120 × 105 [mm] |
image resolution | 0.055 mm/px |
camera angle | 25° |
facet size/point distance | 13 px/8 px |
strain measuring accuracy | 0.01% |
Specimen | Repr. β | Repr. η (vM) | Repr. η (H48) | Repr. η (B89) |
---|---|---|---|---|
UT0 | −0.428 | 0.380 | 0.348 | 0.340 |
UT45 | −0.454 | 0.363 | 0.331 | 0.332 |
UT90 | −0.475 | 0.350 | 0.316 | 0.326 |
N16 | −0.128 | 0.534 | 0.517 | 0.439 |
N9 | −0.232 | 0.489 | 0.468 | 0.400 |
N5 | −0.115 | 0.539 | 0.523 | 0.445 |
SH45 | −0.865 | 0.083 | 0.044 | 0.147 |
SH30 | −0.832 | 0.105 | 0.065 | 0.174 |
SH15 | −0.722 | 0.179 | 0.140 | 0.236 |
Specimen | Repr. β | Repr. η (vM) | Repr. η (H48) | Repr. η (B89) |
---|---|---|---|---|
UT0 | −0.822 | 0.111 | 0.372 | 0.373 |
UT45 | −0.846 | 0.095 | 0.315 | 0.313 |
UT90 | −0.842 | 0.098 | 0.324 | 0.324 |
N16 | −0.664 | 0.220 | 0.705 | 0.621 |
N9 | −0.731 | 0.173 | 0.574 | 0.535 |
N5 | −0.647 | 0.232 | 0.736 | 0.640 |
SH45 | −0.961 | 0.023 | 0.043 | 0.041 |
SH30 | −0.929 | 0.042 | 0.116 | 0.112 |
SH15 | −0.870 | 0.080 | 0.258 | 0.254 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rickhey, F.; Hong, S. Stress Triaxiality in Anisotropic Metal Sheets—Definition and Experimental Acquisition for Numerical Damage Prediction. Materials 2022, 15, 3738. https://doi.org/10.3390/ma15113738
Rickhey F, Hong S. Stress Triaxiality in Anisotropic Metal Sheets—Definition and Experimental Acquisition for Numerical Damage Prediction. Materials. 2022; 15(11):3738. https://doi.org/10.3390/ma15113738
Chicago/Turabian StyleRickhey, Felix, and Seokmoo Hong. 2022. "Stress Triaxiality in Anisotropic Metal Sheets—Definition and Experimental Acquisition for Numerical Damage Prediction" Materials 15, no. 11: 3738. https://doi.org/10.3390/ma15113738
APA StyleRickhey, F., & Hong, S. (2022). Stress Triaxiality in Anisotropic Metal Sheets—Definition and Experimental Acquisition for Numerical Damage Prediction. Materials, 15(11), 3738. https://doi.org/10.3390/ma15113738