Microstructure Evolution and In Situ Resistivity Response of 2196 Al-Li Alloy during Aging Process
Abstract
:1. Introduction
2. Experiment and Methods
3. Results and Discussion
3.1. Resistivity Response during Aging
3.2. Microstructure Evolution
3.3. Relationship between Resistivity Response and Aging Precipitation
4. Conclusions
- (1)
- During the aging process, the electrical resistivity of the 2196 alloy decreased rapidly during the first few hours, then increased gradually. The time to minimum value was temperature−dependent; that is, the higher the aging temperature, the shorter the time to reach the minimum value (17.6 h for 160 °C, 2.3 h for 180 °C, 1.01 h for 200 °C).
- (2)
- In the declining stage of resistivity during the aging process, the δ′ phase precipitates were the main ones in the matrix. However, in the rising stage, the T1 phase began to appear and was accompanied by the coarsening of the δ′ phase.
- (3)
- The resistivity change during the aging process of the 2196 Al-Li alloy depends on the coupling effects of the T1 and δ′ precipitations. Different from the δ′ phase, the aging precipitation of the plate−like T1 phase contributes negatively to the conductivity. When T1 and δ′ phases coexist, there is a coupling effect on the electron scattering. As the number density and size of the T1 phase increase, the coupling effect becomes more significant within 60 h.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, Z.; Li, J.; Chen, Z.; Li, H.; Li, S.; Tan, C. Alloying and microstructural evolution of Al-Li alloys. Chin. J. Nonferrous Met. 2011, 21, 2337–2351. [Google Scholar]
- Yang, S.J.; Lu, J.; Feng, Z.H.; Li, G.A.; Lu, Z.; Dai, S.L. The History of Al-Li Alloys and the Research Development in China. Mater. Rep. 2014, 28, 430–435. [Google Scholar]
- Wu, Y.; Wang, X.D.; Li, J.L.; Feng, Z.H. Effects of Homogenization Temperature on Microstructure of 2A66 Al−Cu−Li Alloy. Mater. Sci. Forum 2016, 850, 575–580. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.J.; Liu, T.J. Tensile Properties of 2099 and 2196 Al-Li alloy Extrusions. Aerosp. Mater. Technol. 2014, 44, 55–59. [Google Scholar]
- Wang, Y. Application Research on New Materials of Al-Li Alloy. Sci. Technol. Inf. 2014, 12, 2–3. [Google Scholar]
- Decreus, B.; Deschamps, A.; De Geuser, F.; Donnadieu, P.; Sigli, C.; Weyland, M. The influence of Cu/Li ratio on precipitation in Al−Cu−Li−x alloys. Acta Mater. 2013, 61, 2207–2218. [Google Scholar] [CrossRef]
- Zhao, Q.; Qian, Z.; Cui, X.; Wu, Y.; Liu, X. Influences of Fe, Si and homogenization on electrical conductivity and mechanical properties of dilute Al−Mg−Si alloy. J. Alloys Compd. 2016, 666, 50–57. [Google Scholar] [CrossRef]
- Yuan, S.P.; Pu, X.; Zhang, G.J.; Liu, G.; Wang, R.H.; Sun, J.; Chen, K.H. Effects of multiple precipitates on electrical conductivity of aged Al−Mg−Si alloys. Chin. J. Nonferrous Met. 2010, 20, 2070–2074. [Google Scholar]
- Valiev, R.; Murashkin, M.; Sabirov, I. A nanostructural design to produce high−strength Al alloys with enhanced electrical conductivity. Scr. Mater. 2014, 76, 13–16. [Google Scholar] [CrossRef]
- Li, H.; Zhang, S.; Zhao, Y.; Li, X.; Jiang, F.; Dong, C. Interpretation of Specific Strength−Over−Resistivity Ratio in Cu Alloys. Materials 2021, 14, 7150. [Google Scholar] [CrossRef]
- Cho, C.H.; Shin, J.; Kim, D.; Cho, H. Influence of Addition of Al and Ti Solutes and Variable Processing Conditions on Mechanical and Electrical Properties of Cu−Cr Alloys. Metals 2020, 11, 39. [Google Scholar] [CrossRef]
- Elibol, C. Effect of severe plastic deformation on the precipitation kinetics and the properties of CuCoNiBe alloys. Mater. Today Commun. 2022, 31, 103473. [Google Scholar] [CrossRef]
- Lin, G.; Zhang, Z.; Wang, H.; Zhou, K.; Wei, Y. Enhanced strength and electrical conductivity of Al−Mg−Si alloy by thermo−mechanical treatment. Mater. Sci. Eng. A 2016, 650, 210–217. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Tang, J. The influence of precipitates on resistivity of 6101 aluminum alloy in aging. Funct. Mater. 2014, 45, 2119–2123. [Google Scholar]
- Karabay, S. Modification of AA−6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile after artificial aging heat treatment for all−aluminum alloy conductor. Mater. Des. 2006, 27, 821–832. [Google Scholar] [CrossRef]
- Esmaeili, S.; Lloyd, D.; Poole, W. Effect of natural aging on the resistivity evolution during artificial aging of the aluminum alloy AA6111. Mater. Lett. 2005, 59, 575–577. [Google Scholar] [CrossRef]
- Khangholi, S.; Javidani, M.; Maltais, A.; Chen, X. Optimization of mechanical properties and electrical conductivity in Al−Mg−Si 6201 alloys with different Mg/Si ratios. J. Mater. Res. 2020, 249, 2765–2776. [Google Scholar] [CrossRef]
- Khangholi, S.N.; Javidani, M.; Maltais, A.; Chen, X.G. Effects of natural aging and pre−aging on the strength and electrical conductivity in Al−Mg−Si AA6201 conductor alloys. Mater. Sci. Eng. A 2021, 820, 141538. [Google Scholar] [CrossRef]
- Prasad, N.; Gokhale, A.; Wanhill, R. Aluminum−Lithium Alloys; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Wang, H.; Zheng, Z.; Fan, X. Mechanical Anisotropy and Inhomogeneity through Thickness of 2297−T87 Aluminum alloy Thick Plate. Rare Met. Mater. Eng. 2016, 45, 1196–1202. [Google Scholar]
- Alexopoulos, N.D.; Proiou, A.; Examilioti, T.; Kashaev, N.; Riekehr, S.; Kourkoulis, S.K. Effect of artificial aging on the mechanical performance of (Al−Cu) 2024 and (Al−Cu−Li) 2198 aluminum alloys. Procedia Struct. Integr. 2016, 2, 3782–3783. [Google Scholar] [CrossRef]
- Li, H.; Geng, J.; Zheng, Z.; Wang, C.; Su, Y.; Hu, B. Continuous cooling transformation curve of a novel Al−Cu−Li alloy. Trans. Nonferrous Met. Soc. China 2006, 16, 1110–1115. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Tang, Y.; Wang, X. Determination and application of CCT diagram for 6082 Aluminum alloy. Acta Metall. Sin. 2010, 46, 1237–1243. [Google Scholar] [CrossRef]
- Ott, N.; Yan, Y.; Ramamurthy, S. Auger electron spectroscopy analysis of grain boundary microchemistry in an Al−Cu−Li alloy. Scr. Mater. 2016, 119, 17–20. [Google Scholar] [CrossRef]
- Raeisinia, B.; Poole, W.; Lioyd, D. Examination of precipitation in the aluminum alloy AA6111 using electrical resistivity measurements. Mater. Sci. Eng. A 2006, 420, 245–249. [Google Scholar] [CrossRef]
- Sauvage, X.; Bobruk, E.V.; Murashkin, M.Y.; Nasedkina, Y.; Enikeev, N.A.; Valiev, R.Z. Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al–Mg–Si alloys. Acta Mater. 2015, 98, 355–366. [Google Scholar] [CrossRef]
- Hatch, J. Aluminum−Properties and Physical Metallurgy; American Society for Metals: Materials Park, OH, USA, 1984; p. 210. [Google Scholar]
- Engler, O.; Marioara, C.D.; Aruga, Y.; Kozuka, M.; Myhr, O.R. Effect of natural ageing or pre−ageing on the evolution of precipitate structure and strength during age hardening of Al−Mg−Si alloy AA 6016. Mater. Sci. Eng. A 2019, 759, 520–529. [Google Scholar] [CrossRef]
- Allen, S.; Hall, E. Foil thickness measurements from convergent−beam diffraction patterns An experimental assessment of errors. Philos. Mag. A 1982, 46, 243–253. [Google Scholar] [CrossRef]
- Dorin, T.; Donnadieu, P.; Chaix, J.M.; Lefebvre, W.; De Geuser, F.; Deschamps, A. Size distribution and volume fraction of T1 phase precipitates from TEM images: Direct measurements and related correction. Micron 2015, 78, 19–27. [Google Scholar] [CrossRef]
- Donnadieu, P.; Shao, Y.; De Geuser, F.; Botton, G.A.; Lazar, S.; Cheynet, M.; De Boissieu, M.; Deschamps, A. Atomic structure of T1 precipitates in Al–Li–Cu alloys revisited with HAADF−STEM imaging and small−angle X−ray scattering. Acta Mater. 2011, 59, 462–472. [Google Scholar] [CrossRef]
- Dwyer, C.; Weyland, M.; Chang, L.Y.; Muddle, B.C. Combined electron beam imaging and ab initio modeling of T1 precipitates in Al-Li−Cu alloys. Appl. Phys. Lett. 2011, 98, 201909. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, R. Grain size−dependent Mg/Si ratio effect on microstructure and mechanical/electrical properties of Al−Mg−Si−Sc alloys. J. Mater. Sci. Technol. 2019, 35, 1354–1363. [Google Scholar] [CrossRef]
- Chen, X.; Ma, X.; Zhao, G.; Wang, Y.; Xu, X. Effects of re−solution and re−aging treatment on mechanical property, corrosion resistance and electrochemical behavior of 2196 Al−Cu−Li alloy. Mater. Des. 2021, 204, 109662. [Google Scholar] [CrossRef]
- Gan, J.Q.; Huang, Y.J.; Cheng, W.E.N.; Jun, D.U. Effect of Sr modification on microstructure and thermal conductivity of hypoeutectic Al−Si alloys. Trans. Nonferrous Met. Soc. China 2020, 30, 2879–2890. [Google Scholar] [CrossRef]
Cu | Li | Ag | Mg | Zr | Ti | Zn | Mn |
---|---|---|---|---|---|---|---|
2.5–3.3 | 1.4–2.1 | 0.25–0.6 | 0.25–0.8 | 0.04–0.18 | 0.03 | 0.04 | 0.35 |
Element | Maximum Solubility in Al (wt.%) | Resistivity Increment of Al per wt.%(μΩ·cm) | |
---|---|---|---|
In Solution | Out of Solution | ||
Cu | 5.65 | 0.344 | 0.030 |
Li | 4.0 | 3.31 | 0.68 |
Condition | δ′ | T1 | ||||
---|---|---|---|---|---|---|
λδ′ [nm] | Nv [m−3] | fδ′ [%] | λT1 [nm] | Nv [m−3] | f T1 [%] | |
160 °C/2 h | 6.12 | 3.66 × 1023 | 4.39 | 0 | 0 | 0 |
160 °C/16 h | 9.5 | 1.02 × 1023 | 4.59 | 50.36 | 2.84 × 1021 | 1.17 |
160 °C/48 h | 11.08 | 0.68 × 1023 | 4.84 | 63.21 | 1.48 × 1021 | 1.82 |
160 °C/60 h | 12.14 | 0.53 × 1023 | 4.92 | 70.36 | 1.39 × 1021 | 2.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, H.; Tang, H.; Xiao, X.; Han, J.; Zheng, Z. Microstructure Evolution and In Situ Resistivity Response of 2196 Al-Li Alloy during Aging Process. Materials 2023, 16, 7492. https://doi.org/10.3390/ma16237492
Li X, Li H, Tang H, Xiao X, Han J, Zheng Z. Microstructure Evolution and In Situ Resistivity Response of 2196 Al-Li Alloy during Aging Process. Materials. 2023; 16(23):7492. https://doi.org/10.3390/ma16237492
Chicago/Turabian StyleLi, Xiang, Hongying Li, Haoqing Tang, Xiang Xiao, Jiaqiang Han, and Ziqiao Zheng. 2023. "Microstructure Evolution and In Situ Resistivity Response of 2196 Al-Li Alloy during Aging Process" Materials 16, no. 23: 7492. https://doi.org/10.3390/ma16237492
APA StyleLi, X., Li, H., Tang, H., Xiao, X., Han, J., & Zheng, Z. (2023). Microstructure Evolution and In Situ Resistivity Response of 2196 Al-Li Alloy during Aging Process. Materials, 16(23), 7492. https://doi.org/10.3390/ma16237492