Fabrication of Multifunctional Silylated GO/FeSiAl Epoxy Composites: A Heat Conducting Microwave Absorber for 5G Base Station Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of GO/Ethanol Suspension
2.3. Preparation of Silylated GO@FeSiAl Nanoparticles
2.4. Preparation of GO/FeSiAl Epoxy Compounds
2.5. Characterization Techniques
3. Results and Discussions
3.1. Morphology and Structural Analysis
3.2. Microwave Absorption Properties
3.3. Thermal Conductivity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tao, H.; Landy, N.I.; Bingham, C.M.; Zhang, X.; Averitt, R.D.; Padilla, W.J. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt. Express 2008, 16, 7181–7188. [Google Scholar] [CrossRef]
- Bai, M. Elctromagnetic Compatibility Analysis of Electronic Circuit. Mod. Electron. Tech. 2009, 32, 191–194. [Google Scholar]
- Li, F.; Tang, B.; Qi, D.; Liu, X.; Kuang, Y.; Xie, H. Electromagnetic Interference from 5G Base Station Antenna in Substation on Secondary Equipment. South. Power Syst. Technol. 2021, 15, 111–117. [Google Scholar]
- Gultekin, D.H.; Siegel, P.H. Absorption of 5G radiation in brain tissue as a function of frequency, power and time. IEEE Access 2020, 8, 115593–115612. [Google Scholar] [CrossRef]
- Zhou, W.Y.; Qi, S.H.; Zhao, H.Z.; Liu, N.L. Thermally conductive silicone rubber reinforced with boron nitride particle. Polym. Compos. 2007, 28, 23–28. [Google Scholar] [CrossRef]
- Tao, L.; Li, C.; Ren, Y.; Li, H.; Chen, J.; Yang, Q. Synthesis of polymer/CNTs composites for the heterogeneous asymmetric hydrogenation of quinolines. Chin. J. Catal. 2019, 40, 1548–1556. [Google Scholar] [CrossRef]
- Wong, C.; Bollampally, R.S. Comparative study of thermally conductive fillers for use in liquid encapsulants for electronic packaging. IEEE Trans. Adv. Packag. 1999, 22, 54–59. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, S.; Long, Y.; Zhu, P.; Wu, F.; Liu, F.; Murugadoss, V.; Winchester, W.; Nautiyal, A.; Wang, Z.; et al. Recent advances in thermal interface materials. ES Mater. Manuf. 2020, 7, 4–24. [Google Scholar] [CrossRef]
- Ji, J.; Li, W.; Liu, Y.; Du, H.; Guo, W.; Su, Y. A method to determine an electrical parameter of form-in-place shielding material with two other parameters known by calculation and simulation. In Proceedings of the 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Beijing, China, 1–4 September 2022; pp. 807–809. [Google Scholar]
- Turunen, J. 3W SFP Interface Development. 2022. Available online: https://urn.fi/URN:NBN:fi:amk-2022092920595 (accessed on 12 August 2022).
- Gu, J.; Zhang, Q.; Dang, J.; Xie, C. Thermal conductivity epoxy resin composites filled with boron nitride. Polym. Adv. Technol. 2012, 23, 1025–1028. [Google Scholar] [CrossRef]
- Fu, Y.X.; He, Z.X.; Mo, D.C.; Lu, S.S. Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl. Therm. Eng. 2014, 66, 493–498. [Google Scholar] [CrossRef]
- Guo, X.; Liu, G. Electromagnetic Shielding Enhancement of Butyl Rubber/Single-Walled Carbon Nanotube Composites via Water-Induced Modification. Polymers 2023, 15, 2101. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Liu, L.; Ding, N.; Liu, G. Transformation from Electromagnetic Inflection to Absorption of Silicone Rubber and Accordion-Shaped Ti3C2MXene Composites by Highly Electric Conductive Multi-Walled Carbon Nanotubes. Polymers 2023, 15, 2332. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Wang, Y. Performance Simulation and Fused Filament Fabrication Modeling of the Wave-Absorbing Structure of Conductive Multi-Walled Carbon Nanotube/Polyamide 12 Composite. Polymers 2023, 15, 804. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Luo, Y.; Li, Y.; Xiong, T.; Wang, L.; Zhang, W.; Gang, S.; Li, X.; Jiang, Q.; Yang, J. Enhanced electromagnetic wave absorption, thermal conductivity and flame retardancy of BCN@ LDH/EP for advanced electronic packing materials. Chem. Eng. J. 2023, 467, 143433. [Google Scholar] [CrossRef]
- Zhao, Y.; Long, A.; Zhao, P.; Liao, L.; Wang, R.; Li, G.; Wang, B.; Liao, X.; Yu, R.; Liao, J. Natural Hollow Fiber-Derived Carbon Microtube with Broadband Microwave Attenuation Capacity. Polymers 2022, 14, 4501. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wu, H.; Zhang, R.; Deng, K.; Li, Y.; Liu, Z.; Zhong, Q.; Kang, Y. Effect of graphene/spherical graphite ratio on the properties of PLA/TPU composites. Polymers 2022, 14, 2538. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Han, X.; Xu, P.; Zhang, X.; Du, Y.; Hu, S.; Wang, J.; Wang, X. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 2011, 98, 072906. [Google Scholar] [CrossRef]
- Sun, C.; Li, Q.; Jia, Z.; Wu, G.; Yin, P. Hierarchically flower-like structure assembled with porous nanosheet-supported MXene for ultrathin electromagnetic wave absorption. Chem. Eng. J. 2023, 454, 140277. [Google Scholar] [CrossRef]
- Zhao, W.; Fu, R.; Gu, X.; Wang, X.; Fang, J. Interface structure and thermal conductivity of polymer matrix composite. Mater. Rep. 2013, 3, 76–79. [Google Scholar]
- Cui, G.; Lu, Y.; Zhou, W.; Lv, X.; Hu, J.; Zhang, G.; Gu, G. Excellent microwave absorption properties derived from the synthesis of hollow Fe3O4@ reduced graphite oxide (RGO) nanocomposites. Nanomaterials 2019, 9, 141. [Google Scholar] [CrossRef]
- Zou, Y.H.; Liu, H.B.; Yang, L.; Chen, Z.Z. The influence of temperature on magnetic and microwave absorption properties of Fe/graphite oxide nanocomposites. J. Magn. Magn. Mater. 2006, 302, 343–347. [Google Scholar] [CrossRef]
- Li, J.; Wei, J.; Pu, Z.; Xu, M.; Jia, K.; Liu, X. Influence of Fe3O4/Fe-phthalocyanine decorated graphene oxide on the microwave absorbing performance. J. Magn. Magn. Mater. 2016, 399, 81–87. [Google Scholar] [CrossRef]
- Ghosh, K.; Srivastava, S.K. Fabrication of N-doped reduced graphite Oxide/MnCo2O4 nanocomposites for enhanced microwave absorption performance. Langmuir 2021, 37, 2213–2226. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Z.; Yang, H.; Li, H.; Liu, X. Soft magnetic properties of gas-atomized FeSiAl microparticles with a triple phosphoric acid-sodium silicate-silicone resin insulation treatment. J. Electron. Mater. 2022, 51, 2142–2155. [Google Scholar] [CrossRef]
- He, J.; Liu, X.; Deng, Y.; Peng, Y.; Deng, L.; Luo, H.; Cheng, C.; Yan, S. Improved magnetic loss and impedance matching of the FeNi-decorated Ti3C2Tx MXene composite toward the broadband microwave absorption performance. J. Alloys Compd. 2021, 862, 158684. [Google Scholar] [CrossRef]
- Zhi, D.; Li, T.; Qi, Z.; Li, J.; Tian, Y.; Deng, W.; Meng, F. Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 2022, 433, 134496. [Google Scholar] [CrossRef]
- Li, H.; Cheng, H.; Liu, H.; Long, L.; Liu, X. Carbon nanotubes/FeSiAl hybrid flake for enhanced microwave absorption properties. J. Electron. Mater. 2022, 51, 6986–6994. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Zhao, F. Study on the electromagnetic properties and microwave absorbing mechanism of flaky FeSiAl alloy based on annealing and phosphate coating. Mater. Res. Express 2021, 8, 066526. [Google Scholar] [CrossRef]
- Sun, J.; Xu, H.; Shen, Y.; Bi, H.; Liang, W.; Yang, R.B. Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites. J. Alloys Compd. 2013, 548, 18–22. [Google Scholar] [CrossRef]
- Xie, L. Synthesis and Rheology of Magnetorheological Fluids Based on High Viscosity Linear Polysiloxane with Focus on Sedimentation. Ph.D. Thesis, Chongqing University, Chongqing, China, 2016. [Google Scholar]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Matsuo, Y.; Tabata, T.; Fukunaga, T.; Fukutsuka, T.; Sugie, Y. Preparation and characterization of silylated graphite oxide. Carbon 2005, 43, 2875–2882. [Google Scholar] [CrossRef]
- Kitchen, R. RF and Microwave Radiation Safety; Newnes: Oxford, UK, 2001. [Google Scholar]
- ASTM D5568-22a; Standard Test Method for Measuring Relative Complex Permittivity and Relative Magnetic Permeability of Solid Materials at Microwave Frequencies Using Waveguide. ASTM: West Conshohocken, PA, USA, 2022.
- Tian, G.; Deng, W.; Xiong, D.; Yang, T.; Zhang, B.; Ren, X.; Lan, B.; Zhong, S.; Jin, L.; Zhang, H.; et al. Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Rep. Phys. Sci. 2022, 3, 100814. [Google Scholar] [CrossRef]
- Gusynin, V.; Sharapov, S.; Carbotte, J. Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 2006, 19, 026222. [Google Scholar] [CrossRef]
- He, E.; Yan, T.; Ye, X.; Gao, Q.; Yang, C.; Yang, P.; Ye, Y.; Wu, H. Preparation of FeSiAl–Fe3O4 reinforced graphene/polylactic acid composites and their microwave absorption properties. J. Mater. Sci. 2023, 58, 11647–11665. [Google Scholar] [CrossRef]
- Wang, X.; Gong, R.; Li, P.; Liu, L.; Cheng, W. Effects of aspect ratio and particle size on the microwave properties of Fe–Cr–Si–Al alloy flakes. Mater. Sci. Eng. A 2007, 466, 178–182. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, J.; Bie, S.; Zhang, L.; Miao, L.; Xu, X. Electromagnetic and microwave absorption properties of surface modified Fe–Si–Al flakes with nylon. J. Alloys Compd. 2012, 527, 71–75. [Google Scholar] [CrossRef]
- Shi, S.; Liu, H.; Cheng, H.; Zhang, L.; Liu, X. Tailored microwave absorption performance through interface evolution by in-situ reduced Fe nanoparticles on the surface of FeSiAl microflake. Phys. Scr. 2023, 98, 105020. [Google Scholar] [CrossRef]
- He, S.; Wang, G.S.; Lu, C.; Liu, J.; Wen, B.; Liu, H.; Guo, L.; Cao, M.S. Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly (vinylidene fluoride). J. Mater. Chem. A 2013, 1, 4685–4692. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, W.; Li, M.; Zhu, X.; Su, H.; Wang, J.; Zhang, X. Flaky FeSiAl powders with high permeability towards broadband microwave absorption through tuning aspect ratio. J. Mater. Sci. Mater. Electron. 2023, 34, 1249. [Google Scholar] [CrossRef]
- Luo, Y. Testing and Research on Electromagnetic Environment of 5G Base Station. Ph.D. Thesis, Beijing University of Posts and Telecommunications, Beijing, China, 2022. [Google Scholar]
- Nagai, Y.; Lai, G.C. Thermal conductivity of epoxy resin filled with particulate aluminum nitride powder. J. Ceram. Soc. Jpn. 1997, 105, 197–200. [Google Scholar] [CrossRef]
Samples | Coupling Agent Content (mg/mL) | Mass Ratio of FeSiAl (%) | Mass Ratio of GO (%) |
---|---|---|---|
GO-1 | 0.2 | 0 | 1 |
GF-0 | 0 | 99 | 1 |
GF-1 | 0.2 | 100 | 0 |
GF-2 | 0.2 | 99.9 | 0.1 |
GF-3 | 0.2 | 99 | 1 |
GF-4 | 0.2 | 90 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Xiao, D.; Yu, Q.; Wang, Y.; Liao, H.; Zhang, T.; Liu, P.; Xu, L. Fabrication of Multifunctional Silylated GO/FeSiAl Epoxy Composites: A Heat Conducting Microwave Absorber for 5G Base Station Packaging. Materials 2023, 16, 7511. https://doi.org/10.3390/ma16247511
Xie Z, Xiao D, Yu Q, Wang Y, Liao H, Zhang T, Liu P, Xu L. Fabrication of Multifunctional Silylated GO/FeSiAl Epoxy Composites: A Heat Conducting Microwave Absorber for 5G Base Station Packaging. Materials. 2023; 16(24):7511. https://doi.org/10.3390/ma16247511
Chicago/Turabian StyleXie, Zhuyun, Dehai Xiao, Qin Yu, Yuefeng Wang, Hanyi Liao, Tianzhan Zhang, Peijiang Liu, and Liguo Xu. 2023. "Fabrication of Multifunctional Silylated GO/FeSiAl Epoxy Composites: A Heat Conducting Microwave Absorber for 5G Base Station Packaging" Materials 16, no. 24: 7511. https://doi.org/10.3390/ma16247511
APA StyleXie, Z., Xiao, D., Yu, Q., Wang, Y., Liao, H., Zhang, T., Liu, P., & Xu, L. (2023). Fabrication of Multifunctional Silylated GO/FeSiAl Epoxy Composites: A Heat Conducting Microwave Absorber for 5G Base Station Packaging. Materials, 16(24), 7511. https://doi.org/10.3390/ma16247511