Effect of Rapid Hollow Cathode Plasma Nitriding Treatment on Corrosion Resistance and Friction Performance of AISI 304 Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- (1)
- The hollow cathode-assisted plasma nitriding method can improve the plasma density through the hollow cathode geometry, obtain more active N atoms quickly, and improve the efficiency of plasma nitriding. We believe 450 °C is the best process temperature for hollow cathode plasma nitriding. It can quickly obtain the S-phase of good corrosion and friction resistance. Compared with conventional plasma nitriding technology, the efficiency is improved by about five times;
- (2)
- The LTPN sample had the best mechanical and frictional properties. The hardness of the LTPN sample was increased by nearly three times, the H3/E*2 value was increased by nearly 30 times, the COF was reduced by 21.5%, and the wear rate was reduced by 99.8%;
- (3)
- The corrosion resistance of nitriding samples was poor in the early stage of electrochemical corrosion. With the corrosion process, a passivation film was formed on the surface of the nitriding sample, which prevented the intrusion of the corrosive medium. The corrosion resistance of nitrided samples was better than that of untreated samples in the later stage. With the increase in nitriding temperature, the phenomenon of “Cr poverty” began to occur, and the corrosion resistance of the nitrided samples decreased.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jimenez-Come, M.J.; Turias, I.J.; Trujillo, F.J. An automatic pitting corrosion detection approach for 316L stainless steel. Mater. Des. 2014, 56, 642–648. [Google Scholar] [CrossRef]
- Hernández-Sánchez, E.; Domínguez-Galicia, Y.M.; Orozco-Álvarez, C.; Carrera-Espinoza, R.; Herrera-Hernández, H.; Velázquez, J.C. A Study on the Effect of the Boron Potential on the Mechanical Properties of the Borided Layers Obtained by Boron Diffusion at the Surface of AISI 316L Steel. Adv. Mater. Sci. Eng. 2014, 2014, 249174. [Google Scholar] [CrossRef]
- Hernandez-Sanchez, E.; Chino-Ulloa, A.; Velázquez, J.C.; Herrera-Hernández, H.; Velázquez-Mancilla, R.; Carrera-Espinoza, R. Effect of Relative Humidity on the Tribological Properties of Self-Lubricating H3BO3 Films Formed on the Surface of Steel Suitable for Biomedical Applications. Adv. Mater. Sci. Eng. 2015, 2015, 436597. [Google Scholar] [CrossRef]
- Sun, Y.; Haruman, E. Effect of electrochemical potential on tribocorrosion behavior of low temperature plasma carburized 316L stainless steel in 1M H2SO4 solution. Surf. Coat. Technol. 2011, 205, 4280–4290. [Google Scholar] [CrossRef]
- Alcantar-Martínez, L.M.; Ruiz-Trabolsi, P.A.; Tadeo-Rosas, R.; Miranda-Hernández, J.G.; Cabrera-Sierra, R.; Velázquez, J.C.; Hernández-Sánchez, E. Improving the Surface Properties of an API 5L Grade B Pipeline Steel by Applying the Boriding Process—Part II: On the Changes in the Mechanical Properties. Coatings 2023, 13, 470. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Oskirko, V.O.; Zakharov, A.N.; Goncharenko, I.M.; Semenov, V.A.; Rabotkin, S.V.; Solovyev, A.A. Hydrogen-Free Active Screen Plasma Nitriding of AISI 316 L Stainless Steel. Met. Mater. Int. 2023, 29, 1498–1509. [Google Scholar] [CrossRef]
- Hoja, S.; Birjandi, B.K.; Hasselbruch, H.; Epp, J. An Investigation into the Wear Behavior of Martensitically Transformed Nitrided Layers. Lubricants 2023, 11, 481. [Google Scholar] [CrossRef]
- Borgioli, F. The Corrosion Behavior in Different Environments of Austenitic Stainless Steels Subjected to Thermochemical Surface Treatments at Low Temperatures: An Overview. Metals 2023, 13, 776. [Google Scholar] [CrossRef]
- Sun, Y. Surface Engineering & Coating Technologies for Corrosion and Tribocorrosion Resistance. Materials 2023, 16, 4863. [Google Scholar]
- Li, J.; Tao, X.; Wu, W.; Xie, G.; Yang, Y.; Zhou, X.; Zhang, S. Effect of arc current on the microstructure, tribological and corrosion performances of AISI 420 martensitic stainless steel treated by arc discharge plasma nitriding. J. Mater. Sci. 2023, 58, 2294–2309. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, M.; Wang, Z.; Zhang, Z.; He, Y.; Yan, J.; Lu, J.; Qiu, J.; Li, Y. Comparison of tribological properties of nitrided Ti-N modified layer and deposited TiN coatings on TA2 pure titanium. Tribol. Int. 2022, 174, 107712. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, T.; Wang, Y.; Zhou, Y. Wear resistance and microstructure of the nitriding layer formed on 2024 aluminum alloy by plasma-enhanced nitriding at different nitriding times. Mater. Res. Express 2019, 6, 066405. [Google Scholar] [CrossRef]
- Teng, Y.; Guo, Y.-Y.; Zhang, M.; Yang, Y.-J.; Huang, Z.; Zhou, Y.-W.; Wu, F.-Y.; Liang, Y.-S. Effect of Cr/CrNx transition layer on mechanical properties of CrN coatings deposited on plasma nitrided austenitic stainless steel. Surf. Coat. Technol. 2019, 367, 100–107. [Google Scholar] [CrossRef]
- Bell, T.; Li, C.X. Plasma Thermochemical Processing of Austenitic Stainless Steel for Combined Wear and Corrosion Resistance. J. Commer. Veh. 2002, 111, 27–36. [Google Scholar]
- Gumuslu, T.; Kaba, M.; Atar, E.; Cimenoglu, H. Effect of low-temperature nitriding on impact-sliding wear behavior of an austenitic stainless steel at room and sub-zero temperatures. Tribol. Int. 2023, 185, 108560. [Google Scholar] [CrossRef]
- Sun, Y.; Bailey, R. Comparison of Wear Performance of Low Temperature Nitrided and Carburized 316L Stainless Steel under Dry Sliding and Corrosive-Wear Conditions. J. Mater. Eng. Perform. 2023, 32, 1238–1247. [Google Scholar] [CrossRef]
- Dong, H. S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys. Metall. Rev. 2010, 55, 65–98. [Google Scholar] [CrossRef]
- Wu, D.; Kahn, H.; Dalton, J.C.; Michal, G.M.; Ernst, F.; Heuer, A.H. Orientation dependence of nitrogen supersaturation in austenitic stainless steel during low-temperature gas-phase nitriding. Acta Mater. 2014, 79, 339–350. [Google Scholar] [CrossRef]
- Brink, B.K.; Ståhl, K.; Christiansen, T.L.; Oddershede, J.; Winther, G.; Somers, M.A.J. On the elusive crystal structure of expanded austenite. Scr. Mater. 2017, 131, 59–62. [Google Scholar] [CrossRef]
- Sommer, M.; Ebner, G.; Decho, H.; Hoja, S.; Fechte-Heinen, R. Surface preparation for characterization of nitride compound layers using hardness indentation and the Palmqvist method. J. Mater. Res. Technol. 2023, 24, 7974–7988. [Google Scholar] [CrossRef]
- Reinders, P.M.; Bräuer, G. A model to predict the s-phase thickness and the change in corrosion behavior toward H2SO4 of 316L austenitic stainless steel after plasma nitriding. Surf. Coat. Technol. 2023, 475, 130135. [Google Scholar] [CrossRef]
- Huang, Z.; Guo, Z.-X.; Liu, L.; Guo, Y.-Y.; Chen, J.; Zhang, Z.; Li, J.-L.; Li, Y.; Zhou, Y.-W.; Liang, Y.-S. Structure and corrosion behavior of ultra-thick nitrided layer produced by plasma nitriding of austenitic stainless steel. Surf. Coat. Technol. 2021, 405, 126689. [Google Scholar] [CrossRef]
- Ura-Bińczyk, E.; Krawczyńska, A.; Sitek, R.; Lewandowska, M. Mechanical properties and corrosion resistance of hydrostatically extruded 316 LVM stainless steel after low-temperature plasma nitriding. Surf. Coat. Technol. 2019, 375, 565–572. [Google Scholar] [CrossRef]
- Olzon-Dionysio, M.; Campos, M.; Kapp, M.; Souza, S.D. Influences of plasma nitriding edge effect on properties of 316L stainless steel. Surf. Coat. Technol. 2010, 204, 3623–3628. [Google Scholar] [CrossRef]
- Tao, X.; Li, X.; Dong, H.; Matthews, A.; Leyland, A. Evaluation of the sliding wear and corrosion performance of triode-plasma nitrided Fe-17Cr-20Mn-0.5N high-manganese and Fe-19Cr-35Ni-1.2Si high-nickel austenitic stainless steels. Surf. Coat. Technol. 2021, 409, 126890. [Google Scholar] [CrossRef]
- El-Hossary, F.M.; Negm, N.Z.; El-Rahman, A.M.A.; Hammad, M.; Templier, C. Duplex treatment of AISI 304 austenitic stainless steel using rf nitriding and dc reactive magnetron sputtering of titanium. Surf. Coat. Technol. 2008, 202, 1392–1400. [Google Scholar] [CrossRef]
- Bhuyan, H.; Maendl, S.; Bora, B.; Favre, M.; Wyndham, E.; Maze, J.R.; Walczak, M.; Manova, D. Surface modification by nitrogen plasma immersion ion implantation into new steel 460Li–21Cr in a capacitively coupled radio frequency discharge. Appl. Surf. Sci. 2014, 316, 72–77. [Google Scholar] [CrossRef]
- Liu, H.Y.; Che, H.L.; Gao, J.Y.; Li, G.B.; Lei, M.K. Low-pressure hollow cathode plasma source carburizing of AISI 304L austenitic stainless steel at low temperature. Surf. Coat. Technol. 2022, 442, 128548. [Google Scholar] [CrossRef]
- Naeem, M.; Awan, S.; Shafiq, M.; Raza, H.A.; Iqbal, J.; Díaz-Guillén, J.C.; Sousa, R.R.M.; Jelani, M.; Abrar, M. Wear and corrosion studies of duplex surface-treated AISI-304 steel by a combination of cathodic cage plasma nitriding and PVD-TiN coating. Ceram. Int. 2022, 48, 21473–21482. [Google Scholar] [CrossRef]
- Lin, K.; Li, X.; Dong, H.; Guo, P.; Gu, D. Nitrogen mass transfer and surface layer formation during the active screen plasma nitriding of austenitic stainless steels. Vacuum 2018, 148, 224–229. [Google Scholar] [CrossRef]
- Naeem, M.; Qadeer, M.; Mujahid, Z.-u.-i.; Rehman, N.U.; Díaz-Guillén, J.C.; Sousa, R.R.M.; Shafiq, M. Time-resolved plasma diagnostics of cathodic cage plasma nitriding system with variable pulsed duty cycle and surface modification of plain carbon steel. Surf. Coat. Technol. 2023, 464, 129542. [Google Scholar] [CrossRef]
- Nikolov, K.; Kster, K.; Kaestner, P.; Bruer, G.; Klages, C.P. Strip hollow cathode method for plasma thermochemical treatment for surface modification of thin metal strips: Plasma nitriding of austenitic stainless steel sheets for bipolar plates-ScienceDirect. Vacuum 2014, 102, 31–37. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Wang, L. Surface properties of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time. Appl. Surf. Sci. 2014, 298, 243–250. [Google Scholar] [CrossRef]
- Adachi, S.; Egawa, M.; Yamaguchi, T.; Ueda, N. Low-Temperature Plasma Nitriding for Austenitic Stainless Steel Layers with Various Nickel Contents Fabricated via Direct Laser Metal Deposition. Coatings 2020, 10, 365. [Google Scholar] [CrossRef]
- Singh, A.; Thirumurugesan, R.; Krishnakumar, S.; Rani, R.; Chandramouli, S.; Parameswaran, P.; Mythili, R. Performance evaluation of plasma nitrided 316L stainless steel during long term high temperature sodium exposure. Nucl. Eng. Technol. 2023, 55, 1468–1475. [Google Scholar] [CrossRef]
- Lin, Y.; Lu, J.; Wang, L.; Xu, T.; Xue, Q. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Mater. 2006, 54, 5599–5605. [Google Scholar] [CrossRef]
- Khusainov, Y.G.; Ramazanov, K.N. Local Ion Nitriding of Martensitic Structural Steel in Plasma of Glow Discharge with Hollow Cathode. Inorg. Mater. Appl. Res. 2019, 10, 544–548. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Shao, M.; Yan, J.; He, Y.; Li, Y. Simulation of hollow-cathode-nitriding plasma and design of diffusion equipment with DC and RF dual discharge. Phys. Scr. 2023, 98, 025610. [Google Scholar] [CrossRef]
- Leyland, A.; Fancey, K.S.; James, A.S.; Matthews, A. Enhanced plasma nitriding at low pressures: A comparative study of d.c. and r.f. techniques. Surf. Coat. Technol. 1990, 41, 295–304. [Google Scholar] [CrossRef]
- Nikolov, K.; Bunk, K.; Jung, A.; Kaestner, P.; Bräuer, G.; Klages, C.P. High-efficient surface modification of thin austenitic stainless steel sheets applying short-time plasma nitriding by means of strip hollow cathode method for plasma thermochemical treatment. Vacuum 2014, 110, 106–113. [Google Scholar] [CrossRef]
- Li, Y.; Bi, Y.; Zhang, M.; Zhang, S.; Gao, X.; Zhang, Z.; He, Y. Hollow cathodic plasma source nitriding of AISI 4140 steel. Surf. Eng. 2021, 37, 351–359. [Google Scholar] [CrossRef]
- Wang, S.; Cai, W.; Li, J.; Wei, W.; Hu, J. A novel rapid D.C. plasma nitriding at low gas pressure for 304 austenitic stainless steel. Mater. Lett. 2013, 105, 47–49. [Google Scholar] [CrossRef]
- Stinville, J.C.; Cormier, J.; Templier, C.; Villechaise, P. Monotonic mechanical properties of plasma nitrided 316L polycrystalline austenitic stainless steel: Mechanical behaviour of the nitrided layer and impact of nitriding residual stresses. Mater. Sci. Eng. A 2014, 605, 51–58. [Google Scholar] [CrossRef]
- Asgan, M.; Barnoush, A.; Johnsen, R.; Hoel, R. Microstructural characterization of pulsed plasma nitrided 316L stainless steel. Mater. Sci. Eng. A 2011, 529, 425–434. [Google Scholar]
- Wang, Z.W.; Li, Y.; Zhang, Z.H.; Zhang, S.Z.; Ren, P.; Qiu, J.X.; Wang, W.W.; Bi, Y.J.; He, Y.Y. Friction and wear behavior of duplex-treated AISI 316L steels by rapid plasma nitriding and (CrWAlTiSi)N ceramic coating. Results Phys. 2021, 24, 104132. [Google Scholar] [CrossRef]
- Cucatti, S.; Ochoa, E.A.; Morales, M.; Droppa, R.; Garcia, J.; Pinto, H.C.; Zagonel, L.F.; Wisnivesky, D.; Figueroa, C.A.; Alvarez, F. Effect of bombarding steel with Xe+ ions on the surface nanostructure and on pulsed plasma nitriding process. Mater. Chem. Phys. 2015, 149–150, 261–269. [Google Scholar] [CrossRef]
- Ubaid ur, r.; Shafiq, M.; Naeem, M.; Raza, H.A.; Saleem, M.; Sharif, M. Enhanced surface properties of AISI-304 using bi-step cathodic cage plasma processing. Vacuum 2018, 151, 243–246. [Google Scholar] [CrossRef]
- Stinville, J.C.; Templier, C.; Villechaise, P.; Pichon, L. Swelling of 316L austenitic stainless steel induced by plasma nitriding. J. Mater. Sci. 2011, 46, 5503–5511. [Google Scholar] [CrossRef]
- Borgioli, F.; Galvanetto, E.; Bacci, T. Influence of surface morphology and roughness on water wetting properties of low temperature nitrided austenitic stainless steels. Mater. Charact. 2014, 95, 278–284. [Google Scholar] [CrossRef]
- Palma Calabokis, O.; Núñez de la Rosa, Y.; Lepienski, C.M.; Perito Cardoso, R.; Borges, P.C. Crevice and pitting corrosion of low temperature plasma nitrided UNS S32750 super duplex stainless steel. Surf. Coat. Technol. 2021, 413, 127095. [Google Scholar] [CrossRef]
- Samanta, A.; Chakraborty, H.; Bhattacharya, M.; Ghosh, J.; Sreemany, M.; Bysakh, S.; Rane, R.; Joseph, A.; Jhala, G.; Mukherjee, S.; et al. Nanotribological response of a plasma nitrided bio-steel. J. Mech. Behav. Biomed. Mater. 2017, 65, 584–599. [Google Scholar] [CrossRef] [PubMed]
- Murali, A.P.; Alphonse, M.; Ganesan, D.; Salunkhe, S.; Hussein, H.M.A.M. Sliding wear behaviour of salt bath nitrided 316LN austenitic stainless steel. Appl. Surf. Sci. Adv. 2023, 15, 100401. [Google Scholar] [CrossRef]
- Ruiz-Trabolsi, P.A.; Chino-Ulloa, A.; Miranda-Hernández, J.G.; Tadeo-Rosas, R.; Carrera-Espinoza, R.; Velázquez, J.C.; Hernández-Sánchez, E. A Comparative Analysis of the Tribological Behavior of Hard Layers Obtained by Three Different Hardened-Surface Processes on the Surface of AISI 4140 Steel. Crystals 2022, 12, 298. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Wang, W.; Mao, J.; Zhang, L.; Zhu, Y.; Ye, Q. Plasma Nitriding of AISI 304 Stainless Steel in Cathodic and Floating Electric Potential: Influence on Morphology, Chemical Characteristics and Tribological Behavior. J. Mater. Eng. Perform. 2018, 27, 948–960. [Google Scholar] [CrossRef]
- Uzun, Y. Tribocorrosion properties of plasma nitrided, Ti-DLC coated and duplex surface treated AISI 316L stainless steel. Surf. Coat. Technol. 2022, 441, 128587. [Google Scholar] [CrossRef]
- Köster, K.; Kaestner, P.; Bräuer, G.; Hoche, H.; Troßmann, T.; Oechsner, M. Material condition tailored to plasma nitriding process for ensuring corrosion and wear resistance of austenitic stainless steel. Surf. Coat. Technol. 2013, 228, S615–S618. [Google Scholar] [CrossRef]
- Ye, Q.W.; Li, Y.; Zhang, M.Y.; Zhang, S.Z.; Bi, Y.J.; Gao, X.P.; He, Y.Y. Electrochemical behavior of (Cr, W, Al, Ti, Si)N multilayer coating on nitrided AISI 316L steel in natural seawater. Ceram. Int. 2020, 46, 22404–22418. [Google Scholar] [CrossRef]
- Baba, H.; Kodama, T.; Katada, Y. Role of nitrogen on the corrosion behavior of austenitic stainless steels. Corros. Sci. 2002, 44, 2393–2407. [Google Scholar] [CrossRef]
- Bouanis, F.Z.; Jama, C.; Traisnel, M.; Bentiss, F. Study of corrosion resistance properties of nitrided carbon steel using radiofrequency N2/H2 cold plasma process. Corros. Sci. 2010, 52, 3180–3190. [Google Scholar] [CrossRef]
- Lippitz, A.; Hübert, T. XPS investigations of chromium nitride thin films. Surf. Coat. Technol. 2005, 200, 250–253. [Google Scholar] [CrossRef]
- Li, D.J.; Liu, F.; Wang, M.X.; Zhang, J.J.; Liu, Q.X. Structural and mechanical properties of multilayered gradient CrN/ZrN coatings. Thin Solid Film. 2006, 506, 202–206. [Google Scholar] [CrossRef]
- Conde, A.; Cristóbal, A.B.; Fuentes, G.; Tate, T.; Damborenea, J.D. Surface analysis of electrochemically stripped CrN coatings. Surf. Coat. Technol. 2006, 201, 3588–3595. [Google Scholar] [CrossRef]
- Bouanis, F.Z.; Bentiss, F.; Traisnel, M.; Jama, C. Enhanced corrosion resistance properties of radiofrequency cold plasma nitrided carbon steel: Gravimetric and electrochemical results. Electrochim. Acta 2009, 54, 2371–2378. [Google Scholar] [CrossRef]
- Sun, Y.; Rana, V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5M NaCl solution. Mater. Chem. Phys. 2011, 129, 138–147. [Google Scholar] [CrossRef]
- Li, L.; Yan, J.; Xiao, J.; Sun, L.; Fan, H.; Wang, J. A comparative study of corrosion behavior of S-phase with AISI 304 austenitic stainless steel in H2S/CO2/Cl- media. Corros. Sci. 2021, 187, 109472. [Google Scholar] [CrossRef]
- Borgioli, F.; Galvanetto, E.; Bacci, T. Corrosion behaviour of low temperature nitrided nickel-free, AISI 200 and AISI 300 series austenitic stainless steels in NaCl solution. Corros. Sci. 2018, 136, 352–365. [Google Scholar] [CrossRef]
- Olzon-Dionysio, M.; de Souza, S.D.; Basso, R.L.O.; de Souza, S. Application of Mössbauer spectroscopy to the study of corrosion resistance in NaCl solution of plasma nitrided AISI 316L stainless steel. Surf. Coat. Technol. 2008, 202, 3607–3614. [Google Scholar] [CrossRef]
- Zamani, P.; Valefi, Z.; Jafarzadeh, K. Comprehensive study on corrosion protection properties of Al2O3, Cr2O3 and Al2O3–Cr2O3 ceramic coatings deposited by plasma spraying on carbon steel. Ceram. Int. 2022, 48, 1574–1588. [Google Scholar] [CrossRef]
- Sreenivasa Rao, K.V.; Girisha, K.G.; Anjan, S.; Abhilash Sharma, N. Experimental Investigation of Corrosion Behavior of Plasma Sprayed Cr2O3 Coatings on 410 grade Steel. Mater. Today Proc. 2017, 4, 10254–10258. [Google Scholar] [CrossRef]
C | Cr | Ni | Mn | Si | S | P | Al | Fe |
---|---|---|---|---|---|---|---|---|
0.06 | 18 | 8.5 | 1.8 | 0.36 | 0.005 | 0.018 | 0.015 | balance |
Sample | Wear Volume (mm3) | Wear Rate (mm3/Nm) |
---|---|---|
Untreated | 2.30 × 102 | 1.92 × 10−3 |
LTPN | 4.30 × 10−1 | 3.59 × 10−6 |
MTPN | 9.16 × 10−1 | 7.63 × 10−6 |
HTPN | 9.34 × 10−1 | 7.78 × 10−6 |
Sample | Icorr (A/cm2) | Ecorr (V) | Corr. Rate (mm/a) |
---|---|---|---|
Untreated LTPN | 1.44 × 10−6 1.47 × 10−5 | −0.60 −1.03 | 1.67 × 10−1 1.70 × 10−1 |
MTPN HTPN | 6.51 × 10−5 2.18 × 10−5 | −0.93 −0.98 | 7.54 × 10−1 2.52 × 10−1 |
Sample | Rs (Ω·cm2) | Rct (Ω·cm2) | CPEdl (F·cm−2) |
---|---|---|---|
Untreated LTPN | 95.63 81.15 | 1.61 × 106 9.80 × 105 | 1.73 × 10−5 1.76 × 10−5 |
MTPN HTPN | 48.72 50.55 | 4.67 × 104 7.41 × 104 | 4.87 × 10−5 5.37 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Dou, H.; Zhou, Z.; Li, H.; Wang, Z.; Jiang, M.; Li, F.; Gao, Y.; Song, C.; Fang, D.; et al. Effect of Rapid Hollow Cathode Plasma Nitriding Treatment on Corrosion Resistance and Friction Performance of AISI 304 Stainless Steel. Materials 2023, 16, 7616. https://doi.org/10.3390/ma16247616
Lu J, Dou H, Zhou Z, Li H, Wang Z, Jiang M, Li F, Gao Y, Song C, Fang D, et al. Effect of Rapid Hollow Cathode Plasma Nitriding Treatment on Corrosion Resistance and Friction Performance of AISI 304 Stainless Steel. Materials. 2023; 16(24):7616. https://doi.org/10.3390/ma16247616
Chicago/Turabian StyleLu, Jinpeng, Haichun Dou, Zelong Zhou, Haihong Li, Zhengwei Wang, Mingquan Jiang, Fengjiao Li, Yue Gao, Chenyu Song, Dazhen Fang, and et al. 2023. "Effect of Rapid Hollow Cathode Plasma Nitriding Treatment on Corrosion Resistance and Friction Performance of AISI 304 Stainless Steel" Materials 16, no. 24: 7616. https://doi.org/10.3390/ma16247616
APA StyleLu, J., Dou, H., Zhou, Z., Li, H., Wang, Z., Jiang, M., Li, F., Gao, Y., Song, C., Fang, D., He, Y., & Li, Y. (2023). Effect of Rapid Hollow Cathode Plasma Nitriding Treatment on Corrosion Resistance and Friction Performance of AISI 304 Stainless Steel. Materials, 16(24), 7616. https://doi.org/10.3390/ma16247616