A Review on Carrier Mobilities of Epitaxial Graphene on Silicon Carbide
Abstract
:1. Introduction
2. Basics of the Mobility of Epigraphene
- Graphene quality;
- Substrate effects;
- Interface effects.
2.1. Graphene Quality
2.2. Substrate Effects
2.3. Interface Effect
3. Improving the Mobility of Epigraphene
4. Future Directions
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Yiang, D.; Zhang, Y.; Dubonos, S.V. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.; Song, Z.M.; Li, T.B.; Li, X.B.; Ogbazghi, A.Y.; Feng, R.; Dai, Z.T.; Marchenkov, A.N.; Conrad, E.H.; First, P.N.; et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916. [Google Scholar] [CrossRef]
- Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A.N.; et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 2006, 312, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Wallace, P.R. The band theory of graphite. Phys. Rev. 1947, 71, 622. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Rotenberg, E. Quasiparticle dynamics in graphene. Nature 2007, 3, 36. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef]
- Wang, L.; Meric, I.; Huang, P.Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L.M.; Muller, D.A.; et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 2013, 342, 614–617. [Google Scholar] [CrossRef]
- Vlassiouk, I.V.; Stehle, Y.; Pudasaini, P.R.; Unocic, R.R.; Rack, P.D.; Baddorf, A.P.; Ivanov, I.N.; Lavrik, N.V.; List, F.; Gupta, N.; et al. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. 2018, 17, 318–322. [Google Scholar] [CrossRef]
- Tyagi, A.; Miseikis, V.; Martini, L.; Forti, S.; Mishra, N.; Gebeyehu, Z.M.; Giambra, M.A.; Zribi, J.; Fregnaux, M.; Aureau, D.; et al. Ultra-clean high-mobility graphene on technologically relevant substrates. Nanoscale 2022, 14, 2167. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Hu, G.; Huang, H.; Zheng, B.; Zhou, Y.; Feng, Y.; Ma, X.; He, J.; Lu, Y.; et al. Giant carrier mobility if graphene with enhanced Shubnikov-de-Haas quantum oscillations: Implications for low-power-consumption device applications. ACS Appl. Nano Mater. 2022, 5, 10860–10866. [Google Scholar] [CrossRef]
- Yamada, T.; Masuzawa, T.; Okigawa, Y. Patassium-doped nano graphene as an intermediate layer for graphene electronics. Appl. Phys. Lett. 2023, 123, 021904. [Google Scholar] [CrossRef]
- Berger, C.; Conrad, E.H.; de Heer, W.A. Epigraphene: Epitaxial graphene on silicon carbide. In Physics of Solid Surfaces, Subvolume B; Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology—New Series, Subvolume III/45B; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kusunoki, M.; Norimatsu, W.; Bao, J.; Morita, K.; Starke, U. Growth and Features of Epitaxial Graphene on SiC. J. Phys. Soc. Jpn. 2015, 84, 121014. [Google Scholar] [CrossRef]
- Norimatsu, K.; Kusunoki, M. Transitional structures of the interface between graphene and 6H–SiC (0001). Chem. Phys. Lett. 2009, 468, 52–56. [Google Scholar] [CrossRef]
- Acheson, E.G. U.S. Patent US568323A, 29 September 1896. Available online: https://patents.google.com/patent/US568323A/en (accessed on 16 November 2023).
- Badami, D.V. Graphitization of α-Silicon Carbide. Nature 1962, 193, 569–570. [Google Scholar] [CrossRef]
- Van Bommel, A.J.; Crombeen, J.E.; van Tooren, A. LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci. 1975, 48, 463–472. [Google Scholar] [CrossRef]
- Forbeaux, I.; Themlin, J.M.; Debever, J.M. Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure. Phys. Rev. B 1998, 58, 16396–16406. [Google Scholar] [CrossRef]
- Emtsev, K.V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G.L.; Ley, L.; McChesney, J.L.; Ohta, T.; Reshanov, S.A.; Rotenberg, E.; et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207. [Google Scholar] [CrossRef]
- Virojanadara, C.; Syväjarvi, M.; Yakimova, R.; Johansson, L.I. Homogeneous large-area graphene layergrowth on 6H-SiC(0001). Phys. Rev. B 2008, 78, 245403. [Google Scholar] [CrossRef]
- De Heer, W.A.; Berger, C.; Wu, X.; Sprinkle, M.; Hu, Y.; Ruan, M.; Stroscio, J.A.; First, P.N.; Haddon, R.; Piot, B.; et al. Epitaxial graphene electronic structure and transport. J. Phys. D Appl. Phys. 2010, 43, 374007. [Google Scholar] [CrossRef]
- Riedl, C.; Coletti, C.; Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): A review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D Appl. Phys. 2010, 43, 374009. [Google Scholar] [CrossRef]
- Hibino, H.; Tanabe, S.; Mizuno, S.; Kageshima, H. Growth and electronic transport properties of epitaxial graphene on SiC. J. Phys. D Appl. Phys. 2012, 45, 154008. [Google Scholar] [CrossRef]
- Norimatsu, K.; Kusunoki, M. Structural features of epitaxial graphene on SiC {0001} surfaces. J. Phys. D Appl. Phys. 2014, 47, 094017. [Google Scholar] [CrossRef]
- Mishra, N.; Boeckl, J.; Motta, N.; Iacopi, F. Graphene growth on silicon carbide: A review. Phys. Status Solidi A 2016, 213, 2277–2289. [Google Scholar] [CrossRef]
- Yazdi, G.R.; Iakimov, T.; Yakimova, R. Epitaxial Graphene on SiC: A Review of Growth and Characterization. Crystals 2016, 6, 53. [Google Scholar] [CrossRef]
- Pradeepkumar, A.; Gaskill, D.K.; Iacopi, F. Electronic and Transport Properties of Epitaxial Graphene on SiC and 3C-SiC/Si: A Review. Appl. Sci. 2020, 10, 4350. [Google Scholar] [CrossRef]
- Norimatsu, W.; Terasawa, T.; Matsuda, K.; Bao, J.; Kusunoki, M. Features and Prospects for Epitaxial Graphene on SiC. In Handbook of Graphene; Scrivener Publishing: Austin, TX, USA, 2019; Volume 1, pp. 153–194. [Google Scholar]
- Lin, Y.M.; Dimitrakopoulos, C.; Jenkins, K.A.; Farmer, D.B.; Chiu, H.-Y.; Grill, A.; Avouris, P. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science 2010, 327, 662. [Google Scholar] [CrossRef]
- Avouris, P.; Xia, F. Graphene applications in electronics and photonics. MRS Bull. 2012, 37, 1225–1234. [Google Scholar] [CrossRef]
- Yu, C.; He, Z.Z.; Li, J.; Song, X.B.; Liu, Q.B.; Cai, S.J.; Feng, Z.H. Quasi-free-standing bilayer epitaxial graphene field-effect transistors on 4H-SiC (0001) substrates. Appl. Phys. Lett. 2016, 108, 013102. [Google Scholar] [CrossRef]
- Guo, Z.; Dong, R.; Chakraborty, P.S.; Lourenco, N.; Palmer, J.; Hu, Y.; Ruan, M.; Hankinson, J.; Kunc, Y.; Cressler, J.D.; et al. Record Maximum Oscillation Frequency in C—Face Epitaxial Graphene Transistors. Nano Lett. 2013, 13, 942–947. [Google Scholar] [CrossRef]
- Tzalenchuk, A.; Lara-Avila, S.; Kalaboukhov, A.; Paolillo, S.; Syväjärvi, M.; Yakimova, R.; Kazakova, O.; Janssen, T.J.B.M.; Fal’ko, V.; Kubatkin, S. Towards a quantum resistance standard based on epitaxial graphene. Nat. Nanotechnol. 2010, 5, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Janssen, T.J.B.M.; Tzalenchuk, A.; Lara-Avila, S.; Kubatkin, S.; Fal’ko, V.I. Quantum resistance metrology using graphene. Rep. Prog. Phys. 2013, 76, 104501. [Google Scholar] [CrossRef] [PubMed]
- Janssen, T.J.B.M.; Rozhko, S.; Antonov, I.; Tzalenchuk, A.; Williams, J.M.; Melhem, Z.; He, H.; Lara-Avila, S.; Kubatkin, S.; Yakimova, R. Operation of graphene quantum Hall resistance standard in a cryogen-free table-top system. 2D Mater. 2015, 2, 035015. [Google Scholar] [CrossRef]
- Kruskopf, M.; Elmquist, R.E. Epitaxial graphene for quantum resistance metrology. Metrologia 2018, 55, R27–R36. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Perebeinos, V.; Freitag, M.; Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 2009, 80, 235402. [Google Scholar] [CrossRef]
- Tanabe, S.; Sekine, Y.; Kageshima, H.; Nagase, M.; Hibino, H. Carrier transport mechanism in graphene on SiC (0001). Phys. Rev. B 2011, 84, 115458. [Google Scholar] [CrossRef]
- Giesbers, A.; Procházka, P.; Flipse, C. Surface phonon scattering in epitaxial graphene on 6H-SiC. Phys. Rev. B 2013, 87, 195405. [Google Scholar] [CrossRef]
- Perebeinos, V.; Avouris, P. Inelastic scattering and current saturation in graphene. Phys. Rev. B 2010, 81, 195442. [Google Scholar] [CrossRef]
- Mahdouani, M. Investigation of the electron-surface phonon interaction effects in graphene on a substrate made of polar materials. Phys. E 2017, 87, 192–198. [Google Scholar] [CrossRef]
- Ristein, J.; Mammadov, S.; Seyller, T. Origin of doping in quasi-free-standing graphene on silicon carbide. Phys. Rev. Lett. 2012, 108, 246104. [Google Scholar] [CrossRef] [PubMed]
- Chua, C.; Connolly, M.; Lartsev, A.; Yager, T.; Lara-Avila, S.; Kubatkin, S.; Kopylov, S.; Fal’ko, V.; Yakimova, R.; Pearce, R.; et al. Quantum Hall Effect and Quantum Point Contact in Bilayer-Patched Epitaxial Graphene. Nano Lett. 2014, 14, 3369–3373. [Google Scholar] [CrossRef] [PubMed]
- Endo, A.; Bao, J.; Norimatsu, W.; Kusunoki, M.; Katsumoto, S.; Iye, Y. Two-carrier model on the magnetotransport of epitaxial graphene containing coexisting single-layer and bilayer area. Philos. Mag. 2017, 97, 1755. [Google Scholar] [CrossRef]
- Kim, J.; Park, H.; Hannon, J.B.; Bedell, S.W.; Fogel, K.; Sadana, D.K.; Dimitrakopoulos, C. Layer-resolved graphene transfer via engineered strain layers. Science 2013, 342, 833. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.H.; Zhou, X.; Kim, S.; Lee, Y.S.; Cruz, S.S.; Kim, Y.; Hannon, J.B.; Yang, Y.; Sadana, D.K.; Ross, F.M.; et al. Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene. Proc. Natl. Acad. Sci. USA 2017, 114, 4082. [Google Scholar] [CrossRef] [PubMed]
- Creeth, G.L.; Strudwick, A.J.; Sadowski, J.T.; Marrows, C.H. Surface morphology and transport studies of epitaxial graphene on SiC (000-1). Phys. Rev. B 2011, 83, 195440. [Google Scholar] [CrossRef]
- Norimatsu, W.; Takada, J.; Kusunoki, M. Formation mechanism of graphene layers on SiC (000-1) in a high-pressure argon atmosphere. Phys. Rev. B 2011, 84, 035424. [Google Scholar] [CrossRef]
- Mathieu, C.; Barrett, N.; Rault, J.; Mi, Y.Y.; Zhang, B.; de Heer, W.A.; Berger, C.; Conrad, E.H.; Renault, O. Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC (000-1). Phys. Rev. B 2011, 83, 235436. [Google Scholar] [CrossRef]
- Johansson, L.; Watcharinyanon, S.; Zakharov, A.A.; Iakimov, T.; Yakimova, R.; Virojanadara, C. Stacking of adjacent graphene layers grown on C-face SiC. Phys. Rev. B 2011, 84, 125405. [Google Scholar] [CrossRef]
- Sakakibara, R.; Bao, J.; Hayashi, N.; Ito, T.; Hibino, H.; Norimatsu, W. Control of rotation angles of multilayer graphene on SiC (000-1) by substrate off-direction and angle. J. Phys. Condens. Matter 2023, 35, 385001. [Google Scholar] [CrossRef]
- Low, T.; Perebeinos, V.; Tersoff, J.; Avouris, P. Deformation and scattering in graphene over substrate steps. Phys. Rev. Lett. 2012, 108, 096601. [Google Scholar] [CrossRef]
- Dimitrakopoulos, C.; Grill, A.; McArdle, T.J.; Liu, Z.; Wisnieff, R.; Antoniadis, D.A. Effect of SiC wafer miscut angle on the morphology and Hall mobility of epitaxially grown graphene. Appl. Phys. Lett. 2011, 98, 222105. [Google Scholar] [CrossRef]
- Ji, S.H.; Hannon, J.B.; Tromp, R.M.; Perebeinos, V.; Tersoff, J.; Ross, F.M. Atomic-scale transport in epitaxial graphene. Nat. Mater. 2012, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Sinterhauf, A.; Traeger, G.A.; Pakdehi, D.; Pierz, K.; Schumacher, H.W.; Wenderoth, M. Unravelling the origin of local variations in the step resistance of epitaxial graphene on SiC: A quantitative scanning tunneling potentiometry study. Carbon 2021, 184, 463. [Google Scholar] [CrossRef]
- Oliveira, M.H., Jr.; Schumann, T.; Ramsteiner, M.; Lopes, J.M.J.; Riechert, H. Influence of the silicon carbide surface morphology on the epitaxial graphene formation. Appl. Phys. Lett. 2011, 99, 111901. [Google Scholar] [CrossRef]
- Sakakibara, R.; Bao, J.; Yuhara, K.; Matsuda, K.; Terasawa, T.; Kusunoki, M.; Norimatsu, W. Step unbunching phenomenon on 4H-SiC (0001) surface during hydrogen etching. Appl. Phys. Lett. 2023, 123, 031603. [Google Scholar] [CrossRef]
- Bao, J.; Yasui, O.; Norimatsu, W.; Matsuda, K.; Kusunoki, M. Sequential control of step-bunching during graphene growth on SiC (0001). Appl. Phys. Lett. 2016, 109, 081602. [Google Scholar] [CrossRef]
- Gruschqitz, M.; Schletter, H.; Schulze, S.; Alexandrou, I.; Tegenkamp, C. Epitaxial graphene on 6H-SiC(0001): Defects in SiC investigated by STEM. Phys. Rev. Mater. 2019, 3, 094004. [Google Scholar] [CrossRef]
- Sinterhauf, A.; Traeger, G.A.; Pakdehi, D.M.; Schadlich, P.; Speck, F.; Seyller, T.; Tegenkamp, C.; Pierz, K.; Schumacher, H.W.; Wenderoth, M. Substrate induced nanoscale resistance variation in epitaxial graphene. Nat. Commun. 2020, 11, 555. [Google Scholar] [CrossRef]
- Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A.A.; Starke, U. Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation. Phys. Rev. Lett. 2009, 103, 246804. [Google Scholar] [CrossRef] [PubMed]
- Speck, F.; Jobst, J.; Fromm, F.; Ostler, M.; Waldmann, D.; Hundhausen, M.; Weber, H.B.; Seyller, T. The quasi-free-standing nature of graphene on H-saturated SiC(0001). Appl. Phys. Lett. 2011, 99, 122106. [Google Scholar] [CrossRef]
- Rosenzweig, P.; Karakachian, H.; Marchenko, D.; Kuster, K.; Starke, U. Overdoping graphene beyond the van Hove singularity. Phys. Rev. Lett. 2020, 125, 176403. [Google Scholar] [CrossRef]
- Bao, J.; Norimatsu, W.; Iwata, H.; Matsuda, K.; Ito, T.; Kusunoki, M. Synthesis of freestanding graphene on SiC by a rapid-cooling technique. Phys. Rev. Lett. 2016, 117, 205501. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, J.L.; VanMil, B.L.; Myers-Ward, R.L.; McCrate, J.M.; Kitt, S.A.; Campbell, P.M.; Jernigan, G.G.; Culbertson, J.C.; Eddy, C.R., Jr.; Gaskill, D.K. Hall effect mobility of epitaxial graphene grown on silicon carbide. Appl. Phys. Lett. 2009, 95, 122102. [Google Scholar] [CrossRef]
- Jobst, J.; Waldmann, D.; Speck, F.; Hirner, R.; Maude, D.K.; Seyller, T.; Weber, H.B. Quantum oscillations and quantum Hall effect in epitaxial graphene. Phys. Rev. B 2010, 81, 195434. [Google Scholar] [CrossRef]
- He, H.; Kim, K.H.; Danilov, A.; Montemurro, D.; Yu, L.; Park, Y.W.; Lombardi, F.; Bauch, T.; Moth-Poulsen, K.; Iakimov, T.; et al. Uniform doping of graphene close to the Dirac point by polymer-assisted assembly of molecular dopants. Nat. Commun. 2018, 9, 3956. [Google Scholar] [CrossRef] [PubMed]
- Yager, T.; Webb, M.J.; Grennberg, H.; Yakimova, R.; Lara-Avila, S.; Kubatkin, S. High mobility epitaxial graphene devices vis aqueous-ozone processing. Appl. Phys. Lett. 2015, 106, 063503. [Google Scholar] [CrossRef]
- Kruskopf, M.; Pakdehi, D.M.; Pierz, K.; Wundrack, S.; Stosch, R.; Dziomba, T.; Götz, M.; Baringhaus, J.; Aprojanz, J.; Tegenkamp, C.; et al. Comeback of epitaxial graphene for electronics: Large-area growth of bilayer-free graphene on SiC. 2D Mater. 2016, 3, 041002. [Google Scholar] [CrossRef]
- Tanabe, S.; Takamura, M.; Harada, Y.; Kageshima, H.; Hibino, H. Effects of hydrogen interactions on transport properties of quasi-free-standing monolayer graphene. Jpn. J. Appl. Phys. 2014, 53, 04EN01. [Google Scholar] [CrossRef]
- Ciuk, T.; Petruk, O.; Kowalik, A.; Jozwik, I.; Rychter, A.; Szmidt, J.; Strupinski, W. Low-noise epitaxial graphene on SiC Hall effect element for commercial applications. Appl. Phys. Lett. 2016, 108, 223504. [Google Scholar] [CrossRef]
- Pallecchi, E.; Lafont, F.; Cavaliere, V.; Schopfer, F.; Mailly, D.; Poirier, W.; Ouerghi, A. High electron mobility in epitaxial graphene on 4H-SiC(0001) via post-growth annealing under hydrogen. Sci. Rep. 2014, 4, 4558. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Cavallucci, T.; Tozzini, V.; Pavlicek, N.; Gross, L.; Meyer, G.; Takamura, M.; Hibino, H.; Beltram, F.; Heun, S. Atomic and electronic structure of Si dangling bonds in quasi-free-standing monolayer graphene. Nano Res. 2018, 11, 864. [Google Scholar] [CrossRef]
- Melios, C.; Winters, M.; Strupinski, W.; Panchal, V.; Giusca, C.E.; Imalka-Jayawardena, K.D.G.; Rorsman, N.; Ravi, S.; Silva, P.; Kazakova, O. Tuning epitaxial graphene sensitivity to water by hydrogen intercalation. Nanoscale 2017, 9, 3440. [Google Scholar] [CrossRef] [PubMed]
- Kitaoka, M.; Nagahama, T.; Nakamura, K.; Aritsuki, T.; Takashima, K.; Ohno, Y.; Nagase, M. Carrier doping effect of humidity for single-crystal graphene on SiC. Jpn. J. Appl. Phys. 2017, 56, 085102. [Google Scholar] [CrossRef]
- Robinson, J.A.; Hollander, M.; LaBella, M., III; Trumbull, K.A.; Cavalero, R.; Snyder, D.W. Epitaxial graphene transistors: Enhancing performance via hydrogen intercalation. Nano Lett. 2011, 11, 3875. [Google Scholar] [CrossRef]
- Sakakibara, R.; Norimatsu, W. Microscopic mechanism of hydrogen intercalation: On the conversion of the buffer layer on SiC to graphene. Phys. Rev. B 2022, 105, 235442. [Google Scholar] [CrossRef]
- Ostler, M.; Fromm, F.; Koch, R.J.; Wehrfritz, P.; Speck, F.; Vita, H.; Bottcher, S.; Horn, K.; Seyller, T. Buffer layer free graphene on SiC(0001) via interface oxidation in water vapor. Carbon 2014, 70, 258. [Google Scholar] [CrossRef]
- Han, M.Y.; Ozyilmaz, B.; Zhang, Y.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805. [Google Scholar] [CrossRef]
- Baringhaus, J.; Ruan, M.; Edler, F.; Tejeda, A.; Sicot, M.; Taleb-Ibrahimi, A.; Li, A.P.; Jiang, Z.; Conrad, E.H.; Berger, C. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 2014, 506, 349–354. [Google Scholar] [CrossRef]
- Shin, H.C.; Jang, Y.; Kim, T.H.; Lee, J.H.; Oh, D.H.; Ahn, S.J.; Lee, J.H.; Moon, Y.; Park, J.H.; Yoo, J.H.; et al. Epitaxial growth of a single-crystal hybridized boron nitride and graphene layer on a wide-band gap semiconductor. J. Am. Chem. Soc. 2015, 137, 3897. [Google Scholar] [CrossRef] [PubMed]
- Sediri, H.; Pierucci, D.; Hajilaoui, M.; Henck, H.; Patriarche, G.; Dappe, Y.J.; Yuan, S.; Toury, B.; Belkhou, R.; Silli, M.G.; et al. Atomically sharp interface in an h-BN-epitaxial graphene van der Waals heterostructure. Sci. Rep. 2015, 5, 16465. [Google Scholar] [CrossRef] [PubMed]
- Rigosi, A.F.; Liu, C.I.; Glavin, N.R.; Yang, Y.; Mill, H.M.; Hu, J.; Walker, A.R.H.; Richter, C.A.; Elmquist, R.E.; Newell, D.B. Electrical stabilization of surface resistivity in epitaxial graphene systems by amorphous boron nitride encapsulation. ACS Omega 2017, 2, 2324. [Google Scholar] [CrossRef] [PubMed]
- Gigliotti, J.; Li, X.; Sundaram, S.; Deniz, D.; Prudkovskiy, V.; Turmaud, J.P.; Hu, Y.; Hu, Y.; Fossard, F.; Merot, J.S.; et al. Highly ordered boron nitride-epigraphene epitaxial films on silicon carbide by lateral epitaxial deposition. ACS Nano 2020, 14, 12962–12971. [Google Scholar] [CrossRef]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 15, 487–496. [Google Scholar] [CrossRef]
- Schwierz, F. Graphene transistors: Status, prospects, and problems. Proc. IEEE 2013, 101, 1567–1584. [Google Scholar] [CrossRef]
Type | Carrier Density [cm−2] | Mobility [cm2/Vs] | Ref. # |
---|---|---|---|
F4TCNQ | 6 × 109 | 70,000 | [70] |
FET | 1.5 × 1010–6 × 1011 | 46,000–11,000 | [41] |
Magnetoresistance | 1.9 × 1012 | 20,000 | [47] |
Hydrogen intercalation | 7 × 1011–1.9 × 1012 | 11,300–2200 | [75] |
PASG | 8 × 1011 | 9500–2800 | [72] |
Ozone | 4 × 1011–4.6 × 1012 | 11,000–1400 | [71] |
Transferred | 4.3 × 1011–5.4 × 1011 | 7500–5100 | [49] |
As-grown | 2.1 × 1012–1.4 × 1014 | 4800–400 | [30] |
CVD graphene | 2 × 1011–4 × 1012 | 137,600–34,200 | [9] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norimatsu, W. A Review on Carrier Mobilities of Epitaxial Graphene on Silicon Carbide. Materials 2023, 16, 7668. https://doi.org/10.3390/ma16247668
Norimatsu W. A Review on Carrier Mobilities of Epitaxial Graphene on Silicon Carbide. Materials. 2023; 16(24):7668. https://doi.org/10.3390/ma16247668
Chicago/Turabian StyleNorimatsu, Wataru. 2023. "A Review on Carrier Mobilities of Epitaxial Graphene on Silicon Carbide" Materials 16, no. 24: 7668. https://doi.org/10.3390/ma16247668
APA StyleNorimatsu, W. (2023). A Review on Carrier Mobilities of Epitaxial Graphene on Silicon Carbide. Materials, 16(24), 7668. https://doi.org/10.3390/ma16247668