Evaluation of Feasibility on Dental Zirconia—Accelerated Aging Test by Chemical Immersion Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. LTD Procedures
2.2.1. Hydrothermal Degradation
2.2.2. Immersed Degradation
2.3. XRD Analysis
2.4. Scanning Electron Microscopy Analysis
2.5. Mechanical Properties
2.6. Crystalline Grain Size Calculation
2.7. LTD Kinetics
3. Results
3.1. Sample Characterization
3.2. Mechanical Properties
3.3. Degradation Kinetics
4. Discussion
5. Conclusions
- Crystalline grain size increased as the sintering temperature increased, and the phase variable also increased.
- By comparing the hydrothermal method with the immersion method, we found that the higher the temperature of the degradation test, the faster the phase transition rate of 3Y-TZP.
- The t–m transformation rate of hydrothermal degradation was significantly larger than that of immersed degradation. The activation energies of hydrothermal degradation were also significantly higher than those of immersed degradation.
- According to the MAJ calculation, the higher sintering temperature was correlated with the lower energy of the t–m phase transformation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelch, M.; Schulz, J.; Edelhoff, D.; Sener, B.; Stawarczyk, B. Impact of different pretreatments and aging procedures on the flexural strength and phase structure of zirconia ceramics. Dent. Mater. 2019, 35, 1439–1449. [Google Scholar] [CrossRef] [PubMed]
- Laske, M.; Opdam, N.J.M.; Bronkhorst, E.M.; Braspenning, J.C.C.; Huysmans, M.C.D.N.J.M. The differences between three performance measures on dental restorations, clinical success, survival and failure: A matter of perspective. Dent. Mater. 2019, 35, 1506–1513. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.B.W.; Barreto, S.C.; Hajhamid, B.; de Souza, G.M.; de Goes, M.F. Effect of cleaning protocol on silica deposition and silica-mediated bonding to Y-TZP. Dent. Mater. 2019, 35, 1603–1613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Batuk, M.; Hadermann, J.; Manfredi, G.; Mariën, A.; Vanmeensel, K.; Inokoshi, M.; Van Meerbeek, B.; Naert, I.; Vleugels, J. Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: Grain boundary segregation and oxygen vacancy annihilation. Acta Mater. 2016, 106, 48–58. [Google Scholar] [CrossRef]
- Chevalier, J.; Gremillard, L.; Virkar, A.V.; Clarke, D.R. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [Google Scholar] [CrossRef]
- Cho, M.-H.; Seol, H.-J. Effect of high-speed sintering on the optical properties, microstructure, and phase distribution of multilayered zirconia stabilized with 5 mol% yttria. Materials 2023, 16, 5570. [Google Scholar] [CrossRef]
- Vult von Steyern, P.; Bruzell, E.; Vos, L.; Andersen, F.S.; Ruud, A. Sintering temperature accuracy and its effect on translucent yttria-stabilized zirconia: Flexural strength, crystal structure, tetragonality and light transmission. Dent. Mater. 2022, 38, 1099–1107. [Google Scholar] [CrossRef]
- Fadavi, F.; Mohammadi-Bassir, M.; Sarabi, N.; Rezvani, M.; Jafari-Semnani, S.; Rastegar Moghaddam, M.; Labbaf, H. Effect of Low-Temperature Degradation, Ph-Cycling and Simulated Tooth Brushing on Surface Roughness, Topography, and Polish Retention of Yttrium-Stabilized Tetragonal Zirconia. J. Dent. 2023, 24, 293–304. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhu, Z.; Jiao, T.; Sun, J. Effect of aging time and thickness on low-temperature degradation of dental zirconia. J. Prosthodont. 2019, 28, e404–e410. [Google Scholar] [CrossRef]
- Cakir-Omur, T.; Gozneli, R.; Ozkan, Y. Effects of silica coating by physical vapor deposition and repeated firing on the low-temperature degradation and flexural strength of a zirconia ceramic. J. Prosthodont. 2019, 28, e186–e194. [Google Scholar] [CrossRef]
- Prado, R.D.; Pereira, G.K.R.; Bottino, M.A.; Melo, R.M.d.; Valandro, L.F. Effect of ceramic thickness, grinding, and aging on the mechanical behavior of a polycrystalline zirconia. Braz. Oral Res. 2017, 31, e82. [Google Scholar] [CrossRef] [PubMed]
- Kohorst, P.; Borchers, L.; Strempel, J.; Stiesch, M.; Hassel, T.; Bach, F.-W.; Hübsch, C. Low-temperature degradation of different zirconia ceramics for dental applications. Acta Biomater. 2012, 8, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiao, Y.; Yao, L.; Sheng, Y.; Hao, Z.; Tang, W.; Dou, R. Investigation of mechanical properties and low-temperature degradation of dental 3Y-TZP ceramics fabricated by stereolithography in combination with microwave sintering. J. Mech. Behav. Biomed. Mater. 2023, 148, 106211. [Google Scholar] [CrossRef] [PubMed]
- Amat, N.F.; Muchtar, A.; Amril, M.S.; Ghazali, M.J.; Yahaya, N. Effect of sintering temperature on the aging resistance and mechanical properties of monolithic zirconia. J. Mater. Res. Technol. 2019, 8, 1092–1101. [Google Scholar] [CrossRef]
- Kongkiatkamon, S.; Peampring, C. Effect of Speed Sintering on Low Temperature Degradation and Biaxial Flexural Strength of 5Y-TZP Zirconia. Molecules 2022, 27, 5272. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Kuwajima, H.; Masaki, T. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid. State Ion. 1981, 3–4, 489–493. [Google Scholar] [CrossRef]
- Cattani-Lorente, M.; Scherrer, S.S.; Durual, S.; Sanon, C.; Douillard, T.; Gremillard, L.; Chevalier, J.; Wiskott, A. Effect of different surface treatments on the hydrothermal degradation of a 3Y-TZP ceramic for dental implants. Dent. Mater. 2014, 30, 1136–1146. [Google Scholar] [CrossRef]
- Tredici, I.G.; Sebastiani, M.; Massimi, F.; Bemporad, E.; Resmini, A.; Merlati, G.; Anselmi-Tamburini, U. Low temperature degradation resistant nanostructured yttria-stabilized zirconia for dental applications. Ceram. Int. 2016, 42, 8190–8197. [Google Scholar] [CrossRef]
- Pereira, G.K.R.; Muller, C.; Wandscher, V.F.; Rippe, M.P.; Kleverlaan, C.J.; Valandro, L.F. Comparison of different low-temperature aging protocols: Its effects on the mechanical behavior of Y-TZP ceramics. J. Mech. Behav. Biomed. Mater. 2016, 60, 324–330. [Google Scholar] [CrossRef]
- Chevalier, J.; Gremillard, L.; Deville, S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu. Rev. Mater. Res. 2007, 37, 1–32. [Google Scholar] [CrossRef]
- ISO 6872:2015; Dentistry—Ceramic Materials. International Organization for Standardization. ISO: Geneva, Switzerland, 2015.
- Milleding, P.; Wennerberg, A.; Alaeddin, S.; Karlsson, S.; Simon, E. Surface corrosion of dental ceramics in vitro. Biomaterials 1999, 20, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Soderholm, K.-J.M.; Mukherjee, R.; Longmate, J. Fler Leachabiit ofComposites Stored inDistilled Water orArtificial Saliva. J. Dent. Res. 1996, 75, 1692–1699. [Google Scholar] [CrossRef] [PubMed]
- Jakovac, M.; Živko-Babić, J.; Ćurković, L.; Aurer, A. Measurement of ion elution from dental ceramics. J. Eur. Ceram. Soc. 2006, 26, 1695–1700. [Google Scholar] [CrossRef]
- de Rijk, W.G.; Jennings, K.A.; Menis, D.L. A comparison of chemical durability test solutions for dental porcelains. In Biomedical Engineering IV; Sauer, B.W., Ed.; Pergamon: Bergama, Turkey, 1985; pp. 152–155. [Google Scholar] [CrossRef]
- ISO 13356 2015; Implants for Surgery—Ceramic Materials Based on Yttria-Stabilized Tetragonal Zirconia (Y-TZP). International Organization for Standardization. ISO: Geneva, Switzerland, 2015.
- ISO 6872:2008; Dentistry—Ceramic Materials. International Organization for Standardization. ISO: Geneva, Switzerland, 2008.
- Garvie, R.C.; Nicholson, P.S. Phase Analysis in Zirconia Systems. J. Am. Ceram. Soc. 1972, 55, 303–305. [Google Scholar] [CrossRef]
- Okada, M.; Taketa, H.; Hara, E.S.; Torii, Y.; Irie, M.; Matsumoto, T. Improvement of mechanical properties of Y-TZP by thermal annealing with monoclinic zirconia nanoparticle coating. Dent. Mater. 2019, 35, 970–978. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, W.; Ju, H.; Yan, S.; Ma, W. Characterization of YSZ Ceramic Nanopowders Synthesized at Different Temperatures via Polyacrylamide Gel Method. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2020, 35, 528–534. [Google Scholar] [CrossRef]
- Liu, H.; Inokoshi, M.; Nozaki, K.; Shimizubata, M.; Nakai, H.; Too, T.D.C.; Minakuchi, S. Influence of high-speed sintering protocols on translucency, mechanical properties, microstructure, crystallography, and low-temperature degradation of highly translucent zirconia. Dent. Mater. 2022, 38, 451–468. [Google Scholar] [CrossRef]
- Kosmač, T.; Wagner, R.; Claussen, N. X-ray determination of transformation depths in ceramics containing tetragonal ZrO2. J. Am. Ceram. Soc. 1981, 64, c-72–c-73. [Google Scholar] [CrossRef]
- Kosmač, T.; Oblak, C.; Jevnikar, P.; Funduk, N.; Marion, L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent. Mater. 1999, 15, 426–433. [Google Scholar] [CrossRef]
- ASTM E112-2013(R2021); Standard Test Methods for Determining Average Grain Size. ASTM International: West Conshohocken, PA, USA, 2021.
- Cattani-Lorente, M.; Durual, S.; Amez-Droz, M.; Wiskott, H.W.A.; Scherrer, S.S. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: A comparison of numerical predictions with experimental data after 2 years of aging. Dent. Mater. 2016, 32, 394–402. [Google Scholar] [CrossRef]
- Christian, J.W.; Otte, H.M. The Theory of Transformations in Metals and Alloys, 2nd ed.; Pergamon Press: Oxford, UK, 1965. [Google Scholar]
- Elshazly, E.; Elhout, S.M.; Ali, M. Yttria Tetragonal Zirconia Biomaterials-Kinetic Investigation. J. Mater. Sci. Technol. 2010, 27, 332. [Google Scholar] [CrossRef]
- Lu, K. Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater. Sci. Eng. R. Rep. 1996, 16, 161–221. [Google Scholar] [CrossRef]
- Nogiwa-Valdez, A.A.; Rainforth, W.M.; Zeng, P.; Ross, I.M. Deceleration of hydrothermal degradation of 3Y-TZP by alumina and lanthana co-doping. Acta Biomater. 2013, 9, 6226–6235. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.; Sara Lee, K.Y.; Tan, C.Y. A review on the hydrothermal ageing behaviour of Y-TZP ceramics. Ceram. Int. 2018, 44, 20620–20634. [Google Scholar] [CrossRef]
- Jing, Q.; Bao, J.; Ruan, F.; Song, X.; An, S.; Zhang, Y.; Tian, Z.; Lv, H.; Gao, J.; Xie, M. High-fracture toughness and aging-resistance of 3Y-TZP ceramics with a low Al2O3 content for dental applications. Ceram. Int. 2019, 45, 6066–6073. [Google Scholar] [CrossRef]
- Kosmač, T.; Kocjan, A. Ageing of dental zirconia ceramics. J. Eur. Ceram. Soc. 2012, 32, 2613–2622. [Google Scholar] [CrossRef]
- Ganor, J.; Mogollón, J.L.; Lasaga, A.C. The effect of pH on kaolinite dissolution rates and on activation energy. Geochim. Et. Cosmochim. Acta 1995, 59, 1037–1052. [Google Scholar] [CrossRef]
- Galwey, A.K.; Brown, M.E. Application of the Arrhenius equation to solid state kinetics: Can this be justified? Thermochim. Acta 2002, 386, 91–98. [Google Scholar] [CrossRef]
- Borchers, L.; Stiesch, M.; Bach, F.-W.; Buhl, J.-C.; Hübsch, C.; Kellner, T.; Kohorst, P.; Jendras, M. Influence of hydrothermal and mechanical conditions on the strength of zirconia. Acta Biomater. 2010, 6, 4547–4552. [Google Scholar] [CrossRef]
- Cattani-Lorente, M.; Scherrer, S.; Ammann, P.; Jobin, M.; Wiskott, H.W. Low Temperature Degradation of a Y-TZP Dental Ceramics. Acta Biomater. 2011, 7, 858–865. [Google Scholar] [CrossRef]
- Gremillard, L.; Chevalier, J.; Epicier, T.; Deville, S.; Fantozzi, G. Modeling the aging kinetics of zirconia ceramics. J. Eur. Ceram. Soc. 2004, 24, 3483–3489. [Google Scholar] [CrossRef]
- Lasaga, A.C. Chemical kinetics of water-rock interactions. J. Geophys. Res. Solid. Earth 1984, 89, 4009–4025. [Google Scholar] [CrossRef]
- Lawson, S. Environmental degradation of zirconia ceramics. J. Eur. Ceram. Soc. 1995, 15, 485–502. [Google Scholar] [CrossRef]
- Lasaga, A.C.; Gibbs, G.V. Ab-initio quantum mechanical calculations of water-rock interactions; adsorption and hydrolysis reactions. Am. J. Sci. 1990, 290, 263–295. [Google Scholar] [CrossRef]
Sintering Temperature (°C) | Hydrothermal Degradation | Immersed Degradation |
---|---|---|
1400 | \ | 3.3 ± 0.4 |
1450 | 2.3 ± 0.4 | 3.1 ± 0.1 |
1500 | 2.1 ± 0.1 | 2.2 ± 0.3 |
1550 | 2.0 ± 0.1 | 2.1 ± 0.4 |
Sintering Temperature (°C) | Hydrothermal Degradation | Immersed Degradation |
---|---|---|
1400 | \ | 60 kJ/mol |
1450 | 101 kJ/mol | 55 kJ/mol |
1500 | 95 kJ/mol | 48 kJ/mol |
1550 | 86 kJ/mol | 35 kJ/mol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.-M.; Ho, W.-F.; Hsu, H.-C.; Song, Y.; Wu, S.-C. Evaluation of Feasibility on Dental Zirconia—Accelerated Aging Test by Chemical Immersion Method. Materials 2023, 16, 7691. https://doi.org/10.3390/ma16247691
Tian J-M, Ho W-F, Hsu H-C, Song Y, Wu S-C. Evaluation of Feasibility on Dental Zirconia—Accelerated Aging Test by Chemical Immersion Method. Materials. 2023; 16(24):7691. https://doi.org/10.3390/ma16247691
Chicago/Turabian StyleTian, Ju-Mei, Wen-Fu Ho, Hsueh-Chuan Hsu, Yi Song, and Shih-Ching Wu. 2023. "Evaluation of Feasibility on Dental Zirconia—Accelerated Aging Test by Chemical Immersion Method" Materials 16, no. 24: 7691. https://doi.org/10.3390/ma16247691
APA StyleTian, J. -M., Ho, W. -F., Hsu, H. -C., Song, Y., & Wu, S. -C. (2023). Evaluation of Feasibility on Dental Zirconia—Accelerated Aging Test by Chemical Immersion Method. Materials, 16(24), 7691. https://doi.org/10.3390/ma16247691