La2O3-CeO2-Supported Bimetallic Cu-Ni DRM Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Supports and Catalysts
2.2. Characterization Methods
3. Results
3.1. Composition and Structure of Catalyst Precursors
3.2. Formation of Active Component, Structure, and Acid Base Properties of the Reduced Catalysts
3.3. Catalytic Properties and Stability to Carbonization in DRM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; et al. Climate Change 2023: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Global Monitoring Laboratory; Earth System Research Laboratories. Trends in Globally-Averaged CH4, N2O, and SF6 Determined from NOAA Global Monitoring Laboratory Measurements. Available online: https://gml.noaa.gov/ccgg/trends_doi.html (accessed on 12 November 2023).
- Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837. [Google Scholar] [CrossRef] [PubMed]
- Aramouni, N.A.K.; Touma, J.G.; Tarboush, B.A.; Zeaiter, J.; Ahmad, M.N. Catalyst design for dry reforming of methane: Analysis review. Renew. Sust. Energ. Rev. 2018, 82, 2570–2585. [Google Scholar] [CrossRef]
- Krylov, O.V. Dry reforming of methane into syngas. Russ. J. Gen. Chem. 2000, 1, 19–33. [Google Scholar]
- Wang, S.; Lu, G.Q.; Millar, G.J. Carbon Dioxide Reforming of Methane To Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art. Energy Fuels 1996, 10, 896–904. [Google Scholar] [CrossRef]
- Fan, M.S.; Abdullah, A.Z.; Bhatia, S. Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas. ChemCatChem 2009, 1, 192–208. [Google Scholar] [CrossRef]
- Papadopoulou, C.; Matralis, H.; Verykios, X.E. Utilization of Biogas as a Renewable Carbon Source: Dry Reforming of Methane. In Catalysis for Alternative Energy Generation, 1st ed.; Guczi, L., Erdôhelyi, A., Eds.; Springer: New York, NY, USA, 2012; pp. 57–127. ISBN 978-1-4614-0344-9. [Google Scholar]
- Mondal, K.; Sasmal, S.; Badgandi, S.; Chowdhury, D.R.; Nair, V. Dry reforming of methane to syngas: A potential alternative process for value added chemicals—A techno-economic perspective. Environ. Sci. Pollut. Res. 2016, 23, 22267–22273. [Google Scholar] [CrossRef]
- Yentekakis, I.V.; Goula, G.; Hatzisymeon, M.; Betsi-Argyropoulou, I.; Botzolaki, G.; Kousi, K.; Kondarides, D.I.; Taylor, M.J.; Parlett, C.M.A.; Osatiashtiani, A.; et al. Effect of support oxygen storage capacity on the catalytic performance of Rh nanoparticles for CO2 reforming of methane. Appl. Catal. B 2019, 243, 490–501. [Google Scholar] [CrossRef]
- Makri, M.M.; Vasiliades, M.A.; Petallidou, K.C.; Efstathiou, A.M. Effect of support composition on the origin and reactivity of carbon formed during dry reforming of methane over 5 wt% Ni/Ce1−xMxO2−δ (M = Zr4+, Pr3+) catalysts. Catal. Today 2016, 259, 150–164. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Rare Earth Elements—Critical Resources for High Technology. Available online: https://pubs.usgs.gov/fs/2002/fs087-02/ (accessed on 16 November 2023).
- Li, P.; Chen, X.; Li, Y.; Schwank, J.W. A review on oxygen storage capacity of CeO2-based materials: Influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control. Catal. Today 2019, 327, 90–115. [Google Scholar] [CrossRef]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef]
- Liew, S.Y.; Jalil, A.A.; Tan, J.S. A short review on the promotional effects of ceria-based catalyst for dry reforming methane. J. Phys. Conf. Ser. 2022, 2259, 012020. [Google Scholar] [CrossRef]
- Odedairo, T.; Chen, J.; Zhu, Z. Metal–support interface of a novel Ni–CeO2 catalyst for dry reforming of methane. Catal. Commun. 2013, 31, 25–31. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Tian, H.; Zeng, L.; Zhao, Z.J.; Gong, J. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Appl. Catal. B 2017, 202, 683–694. [Google Scholar] [CrossRef]
- Bekheet, M.F.; Nezhad, P.D.K.; Bonmassar, N.; Schlicker, L.; Gili, A.; Praetz, S.; Gurlo, A.; Doran, A.; Gao, Y.; Heggen, M.; et al. Steering the Methane Dry Reforming Reactivity of Ni/La2O3 Catalysts by Controlled In Situ Decomposition of Doped La2NiO4 Precursor Structures. ACS Catal. 2021, 11, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Mullins, D.R. The surface chemistry of cerium oxide. Surf. Sci. Rep. 2015, 70, 42–85. [Google Scholar] [CrossRef]
- Wang, Y.; Takahashi, Y.; Ohtsuka, Y. Carbon Dioxide as Oxidant for the Conversion of Methane to Ethane and Ethylene Using Modified CeO2 Catalysts. J. Catal. 1999, 186, 160–168. [Google Scholar] [CrossRef]
- Staudt, T.; Lykhach, Y.; Tsud, N.; Skála, T.; Prince, K.C.; Matolín, V.; Libuda, J. Ceria reoxidation by CO2: A model study. J. Catal. 2010, 275, 181–185. [Google Scholar] [CrossRef]
- Cheng, Z.; Sherman, B.J.; Lo, C.S. Carbon dioxide activation and dissociation on ceria (110): A density functional theory study. J. Chem. Phys. 2013, 138, 014702. [Google Scholar] [CrossRef]
- Hahn, K.R.; Iannuzzi, M.; Seitsonen, A.P.; Hutter, J. Coverage Effect of the CO2 Adsorption Mechanisms on CeO2 (111) by First Principles Analysis. J. Phys. Chem. C 2013, 117, 1701–1711. [Google Scholar] [CrossRef]
- de Leitenburg, C.; Trovarelli, A.; Kašpar, J. A Temperature-Programmed and Transient Kinetic Study of CO2 Activation and Methanation over CeO2 Supported Noble Metals. J. Catal. 1997, 166, 98–107. [Google Scholar] [CrossRef]
- Demoulin, O.; Navez, M.; Mugabo, J.L.; Ruiz, P. The oxidizing role of CO2 at mild temperature on ceria-based catalysts. Appl. Catal. B 2007, 70, 284–293. [Google Scholar] [CrossRef]
- Grabchenko, M.; Pantaleo, G.; Puleo, F.; Kharlamova, T.S.; Zaikovskii, V.I.; Vodyankina, O.; Liotta, L.F. Design of Ni-based catalysts supported over binary La-Ce oxides: Influence of La/Ce ratio on the catalytic performances in DRM. Catal. Today 2021, 382, 71–81. [Google Scholar] [CrossRef]
- Zhang, Z.; Verykios, X.E.; MacDonald, S.M.; Affrossman, S. Comparative Study of Carbon Dioxide Reforming of Methane to Synthesis Gas over Ni/La2O3 and Conventional Nickel-Based Catalysts. J. Phys. Chem. 1996, 100, 744–754. [Google Scholar] [CrossRef]
- Tsipouriari, V.A.; Verykios, X.E. Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst. Catal. Today 2001, 64, 83–90. [Google Scholar] [CrossRef]
- Tsipouriari, V.A.; Verykios, X.E. Carbon and Oxygen Reaction Pathways of CO2 Reforming of Methane over Ni/La2O3 and Ni/Al2O3 Catalysts Studied by Isotopic Tracing Techniques. J. Catal. 1999, 187, 85–94. [Google Scholar] [CrossRef]
- Fornasiero, P.; Kašpar, J.; Graziani, M. Redox Behavior of High Surface Area Rh-Loaded Ce0.5Zr0.5O2 Mixed Oxide. J. Catal. 1997, 167, 576–580. [Google Scholar] [CrossRef]
- Zhang, B.; Li, D.; Wang, X. Catalytic performance of La–Ce–O mixed oxide for combustion of methane. Catal. Today 2010, 158, 348–353. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z.J.; Zeng, L.; Zhao, J.; Tian, H.; Chen, S.; Li, K.; Sangab, S.; Gong, J. On the role of Ce in CO2 adsorption and activation over lanthanum species. Chem. Sci. 2018, 9, 3426–3437. [Google Scholar] [CrossRef]
- Kim, S.M.; Abdala, P.M.; Margossian, T.; Hosseini, D.; Foppa, L.; Armutlulu, A.; van Beek, W.; Comas-Vives, A.; Copéret, C.; Müller, C. Cooperativity and Dynamics Increase the Performance of NiFe Dry Reforming Catalysts. J. Am. Chem. Soc. 2017, 139, 1937–1949. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, B.; Miao, S.; Liu, W.; Xie, J.; Lee, S.; Pellin, M.J.; Xiao, D.; Su, D.; Ma, D. Lattice Strained Ni-Co alloy as a High-Performance Catalyst for Catalytic Dry Reforming of Methane. ACS Catal. 2019, 9, 2693–2700. [Google Scholar] [CrossRef]
- Passos, A.P.; Pulcinelli, S.H.; Santilli, C.V.; Briois, V. Operando monitoring of metal sites and coke evolution during non-oxidative and oxidative ethanol steam reforming over Ni and NiCu ex-hydrotalcite catalysts. Catal. Today 2019, 336, 122–130. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, E.G.; Joo, O.S.; Jung, K.D. Stabilization of Ni/Al2O3 catalyst by Cu addition for CO2 reforming of methane. Appl. Catal. A 2004, 269, 1–6. [Google Scholar] [CrossRef]
- Halliche, D.; Bouarab, R.; Cherifi, O.; Bettahar, M.M. Carbon dioxide reforming of methane on modified Ni/α-Al2O3 catalysts. Catal. Today 1996, 29, 373–377. [Google Scholar] [CrossRef]
- Chatla, A.; Ghouri, M.M.; El Hassan, O.W.; Mohamed, N.; Prakash, A.V.; Elbashir, N.O. An experimental and first principles DFT investigation on the effect of Cu addition to Ni/Al2O3 catalyst for the dry reforming of methane. Appl. Catal. A 2020, 602, 117699. [Google Scholar] [CrossRef]
- Zambaldi, P.; Haug, L.; Penner, S.; Klötzer, B. Dry Reforming of Methane on NiCu and NiPd Model Systems: Optimization of Carbon Chemistry. Catalysts 2022, 12, 311–334. [Google Scholar] [CrossRef]
- Danks, A.E.; Hallb, S.R.; Schnepp, Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef]
- Livage, J.; Henry, M.; Sanchez, C. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 1998, 18, 259–341. [Google Scholar] [CrossRef]
- Bularzik, J.; Davies, P.K.; Navrotsky, A. Thermodynamics of Solid-Solution Formation in NiO-CuO. J. Am. Ceram. Soc. 1986, 69, 453–457. [Google Scholar] [CrossRef]
- Gallego, G.S.; Mondragón, F.; Barrault, J.; Tatibouët, J.M.; Batiot-Dupeyrat, C. CO2 reforming of CH4 over La–Ni based perovskite precursors. Appl. Catal. A 2006, 311, 164–171. [Google Scholar] [CrossRef]
- Grabchenko, M.; Pantaleo, G.; Puleo, F.; Vodyankina, O.; Liotta, L.F. Ni/La2O3 catalysts for dry reforming of methane: Effect of La2O3 synthesis conditions on the structural properties and catalytic performances. Int. J. Hydrogen Energy 2021, 46, 7939–7953. [Google Scholar] [CrossRef]
- Rojas, M.L.; Fierro, J.L.G.; Tejuca, L.G.; Bell, A.T. Preparation and characterization of LaMn1−xCuxO3+λ perovskite oxides. J. Catal. 1990, 124, 41–51. [Google Scholar] [CrossRef]
- Touahra, F.; Rabahi, A.; Chebout, R.; Boudjemaa, A.; Lerari, D.; Sehailia, M.; Halliche, D.; Bachari, K. Enhanced catalytic behaviour of surface dispersed nickel on LaCuO3 perovskite in the production of syngas: An expedient approach to carbon resistance during CO2 reforming of methane. Int. J. Hydrogen Energy 2016, 41, 2477–2486. [Google Scholar] [CrossRef]
- Ashok, J.; Reddy, P.S.; Raju, G.; Subrahmanyam, M.; Venugopal, A. Catalytic Decomposition of Methane to Hydrogen and Carbon Nanofibers over Ni−Cu−SiO2 Catalysts. Energy Fuels 2009, 23, 5–13. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, J.; Wu, X.; Wen, J.; Zhao, R.; Li, Z.; Tian, G.; Zhang, Q.; Ning, P.; Hao, J. Frustrated Lewis Pairs Boosting Low-Temperature CO2 Methanation Performance over Ni/CeO2 Nanocatalysts. ACS Catal. 2022, 12, 10587–10602. [Google Scholar] [CrossRef]
- Lázaro, M.J.; Echegoyen, Y.; Suelves, I.; Palacios, J.M.; Moliner, R. Decomposition of methane over Ni-SiO2 and Ni-Cu-SiO2 catalysts: Effect of catalyst preparation method. Appl. Catal. A 2007, 329, 22–29. [Google Scholar] [CrossRef]
- da Silva, A.A.A.; da Costa, L.O.O.; Mattos, L.V.; Noronha, F.B. The study of the performance of Ni-based catalysts obtained from LaNiO3 perovskite-type oxides synthesized by the combustion method for the production of hydrogen by reforming of ethanol. Catal. Today 2013, 213, 25–32. [Google Scholar] [CrossRef]
- Falcón, H.; Martinez-Lope, M.J.; Alonso, J.A.; Fierro, J.L.G. Defect LaCuO3−δ (δ = 0.05−0.45) perovskites: Bulk and surface structures and their relevance in CO oxidation. Appl. Catal. B 2000, 26, 131–142. [Google Scholar] [CrossRef]
- Li, M.; van Veen, A.C. Tuning the catalytic performance of Ni-catalysed dry reforming of methane and carbon deposition via Ni-CeO2-x interaction. Appl. Catal. B 2018, 237, 641–648. [Google Scholar] [CrossRef]
- Binet, C.; Daturi, M.; Lavalley, J.C. IR study of polycrystalline ceria properties in oxidised and reduced states. Catal. Today 1999, 50, 207–225. [Google Scholar] [CrossRef]
- Nikoo, M.K.; Amin, N.A.S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process. Technol. 2011, 92, 678–691. [Google Scholar] [CrossRef]
- Batiot-Dupeyrat, C.; Valderrama, G.; Meneses, A.; Martinez, F.; Barrault, J.; Tatibouët, J.M. Pulse study of CO2 reforming of methane over LaNiO3. Appl. Catal. A 2003, 248, 143–151. [Google Scholar] [CrossRef]
- Chen, Y.; Tao, J.; Ezzeddine, A.; Mahfouz, R.; Al-Shahrani, A.; Alabedi, G.; Khashab, N.M. Superior Performance Nanocomposites from Uniformly Dispersed Octadecylamine Functionalized Multi-Walled Carbon Nanotubes. C 2015, 1, 58–76. [Google Scholar] [CrossRef]
- He, X.; Xu, X.; Boa, G.; Yan, Y. Studies on the effects of different multiwalled carbon nanotube functionalization techniques on the properties of bio-based hybrid non-isocyanate polyurethane. RSC Adv. 2020, 10, 2180–2190. [Google Scholar] [CrossRef] [PubMed]
- Al-Sabban, B.E.A. Development of Coke-Tolerant Transition Metal Catalysts for Dry Reforming of Methane. Ph.D. Thesis, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 2016. [Google Scholar] [CrossRef]
- Zhou, R.; Mohamedali, M.; Ren, Y.; Lu, Q.; Mahinpey, N. La-Ce binary oxide catalysts for low-temperature dry reforming. Int. J. Hydrogen Energy 2023, 48, 34766–34782. [Google Scholar] [CrossRef]
Sample | ω(Ni), wt% | ω(Cu), wt% | nLa/nCe | SBET, m2/g | dpore, nm | Phase Composition | d(CSR), nm |
---|---|---|---|---|---|---|---|
LaCeOx 1:1 | — | — | 1.0 | 28 | 8.4 | La0.54Ce0.46O2-δ | 10 |
NiCu(0)/LaCeOx 1:1 | 10.4 | — | 1.0 | 20 | 12.6 | La0.54Ce0.46O2-δ | 12 |
NiO | 16 | ||||||
NiCu(20)/LaCeOx 1:1 | 11.1 | 2.8 | 1.0 | 15 | 19.8 | La0.54Ce0.46O2-δ | 15 |
NiO | 22 | ||||||
LaCeOx 9:1 | – | – | 9.8 | 8 | 19.4 | La1-xCexO2-δ | 22 |
La2O3 | 20 | ||||||
La2CO5 | – | ||||||
NiCu(0)/LaCeOx 9:1 | 11.0 | – | 9.2 | 6 | 10.0 | La1-xCexO2-δ | – |
LaxNiOy | – | ||||||
NiCu(20)/LaCeOx 9:1 | 10.9 | 3.0 | 9.1 | 6 | 23.9 | La1-xCexO2-δ | – |
LaxNiOy | – |
Sample | Total CO2 Consumption, mmol/g a | d(CSR Ni0), nm | Tmax of Reduction, °C | Experimental H2 Consumption, mmol/g b | ωreduction c, % | |
---|---|---|---|---|---|---|
NiCu(0)/LaCeOx 1:1 | 0.091 | 17 | 195 | 0.050 | 121 | |
360 | 1.973 | |||||
452 | 0.161 | |||||
NiCu(20)/LaCeOx 1:1 | 0.043 | 18 | 220 | 0.446 | 114 | |
315 | 1.905 | |||||
452 | 0.313 | |||||
NiCu(0)/LaCeOx 9:1 | 0.138 | – | 385 | 0.756 | 121 | |
559 | 1.502 | |||||
NiCu(20)/LaCeOx 9:1 | 0.144 | – | 348 | 1.407 | 152 | |
525 | 2.127 |
Sample | X(CH4)/X(CO2), % | H2/CO | ID/IG | Amount of Carbon Deposition Products, mass.% | ||
---|---|---|---|---|---|---|
Initial | Final, After 6 h | Initial | Final, After 6 h | |||
NiCu(0)/LaCeOx 1:1 | 71.1/70.9 | 60.3/68.5 | 1.080 | 0.935 | 0.76 | 66.5 |
NiCu(20)/LaCeOx 1:1 | 61.8/67.6 | 51.8/62.1 | 0.981 | 0.868 | 1.32 | 41.5 |
NiCu(0)/LaCeOx 9:1 | 39.0/51.5 | 54.6/64.5 | 0.774 | 0.883 | – | – |
NiCu(20)/LaCeOx 9:1 | 54.5/65.2 | 52.5/63.3 | 0.878 | 0.854 | 1.12 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putanenko, P.K.; Dorofeeva, N.V.; Kharlamova, T.S.; Grabchenko, M.V.; Kulinich, S.A.; Vodyankina, O.V. La2O3-CeO2-Supported Bimetallic Cu-Ni DRM Catalysts. Materials 2023, 16, 7701. https://doi.org/10.3390/ma16247701
Putanenko PK, Dorofeeva NV, Kharlamova TS, Grabchenko MV, Kulinich SA, Vodyankina OV. La2O3-CeO2-Supported Bimetallic Cu-Ni DRM Catalysts. Materials. 2023; 16(24):7701. https://doi.org/10.3390/ma16247701
Chicago/Turabian StylePutanenko, Pavel K., Natalia V. Dorofeeva, Tamara S. Kharlamova, Maria V. Grabchenko, Sergei A. Kulinich, and Olga V. Vodyankina. 2023. "La2O3-CeO2-Supported Bimetallic Cu-Ni DRM Catalysts" Materials 16, no. 24: 7701. https://doi.org/10.3390/ma16247701
APA StylePutanenko, P. K., Dorofeeva, N. V., Kharlamova, T. S., Grabchenko, M. V., Kulinich, S. A., & Vodyankina, O. V. (2023). La2O3-CeO2-Supported Bimetallic Cu-Ni DRM Catalysts. Materials, 16(24), 7701. https://doi.org/10.3390/ma16247701