Carbon Quantum Dots Accelerating Surface Charge Transfer of 3D PbBiO2I Microspheres with Enhanced Broad Spectrum Photocatalytic Activity—Development and Mechanism Insight
Abstract
:1. Introduction
2. Experimental Details
2.1. Sample Preparation
2.2. Sample Characterization
2.3. Photocatalytic Degradation Test
3. Result and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Long, C.C.; Jiang, Z.X.; Shangguan, J.F.; Qing, T.P.; Zhang, P.; Feng, B. Applications of carbon dots in environmental pollution control: A review. Chem. Eng. J. 2021, 406, 126848. [Google Scholar] [CrossRef]
- Matveev, A.T.; Varlamova, L.A.; Konopatsky, A.S.; Leybo, D.V.; Volkov, I.N.; Sorokin, P.B.; Fang, X.S.; Shtansky, D.V. A new insight into the mechanisms underlying the discoloration, sorption, and photodegradation of methylene blue solutions with and without BNOx nanocatalysts. Materials 2022, 15, 8169. [Google Scholar] [CrossRef]
- Ashwini, S.; Prashantha, S.C.; Naik, R.; Nagabhushana, H. Enhancement of luminescence intensity and spectroscopic analysis of Eu3+ activated and Li+ charge-compensated Bi2O3 nanophosphors for solid-state lighting. J. Rare Earth 2019, 37, 356–364. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zheng, Y.J.; Zheng, H.S.; Jing, T.; Zhao, Y.P.; Tian, J.Z. Porous oxygen-doped g-C3N4 with the different precursors for excellent photocatalytic activities under visible light. Materials 2022, 15, 1391. [Google Scholar] [CrossRef] [PubMed]
- Di, J.; Xia, J.X.; Li, H.M.; Guo, S.J.; Dai, S. Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy 2017, 41, 172–192. [Google Scholar] [CrossRef]
- Manohar, T.; Prashantha, S.C.; Nagaswarupa, H.P.; Naik, R.; Nagabhushana, H.; Anantharaju, K.S.; Vishnu Mahesh, K.R.; Premkumar, H.B. White light emitting lanthanum aluminate nanophosphor: Near ultra violet excited photoluminescence and photometric characteristics. J. Lumin. 2017, 190, 279–288. [Google Scholar] [CrossRef]
- Hu, Q.S.; Dong, J.T.; Chen, Y.; Yi, J.J.; Xia, J.X.; Yin, S.; Li, H.M. In-situ construction of bifunctional MIL-125(Ti)/BiOI reactive adsorbent/photocatalyst with enhanced removal efficiency of organic contaminants. Appl. Surf. Sci. 2022, 583, 152423. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.Z.; Wu, Y.; Zeng, G.M.; Chen, X.H.; Leng, L.J.; Li, H. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl. Catal. B Environ. 2015, 174–175, 445–454. [Google Scholar] [CrossRef]
- Yu, Y.T.; Huang, H.W. Coupled adsorption and photocatalysis of g-C3N4 based composites: Materials synthesis, mechanism, and environmental applications. Chem. Eng. J. 2023, 453, 139755. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Lai, C.; Zeng, G.M.; Huang, D.L.; Cheng, M.; Wang, J.J.; Chen, F.; Zhou, C.Y.; Xiong, W.P. BiOX (X=Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management. Adv. Colloid Interface Sci. 2018, 254, 76–93. [Google Scholar] [CrossRef]
- Ye, L.Q.; Su, Y.R.; Xie, H.Q.; Zhang, C. Recent advances in BiOX (X=Cl, Br and I) photocatalysts: Synthesis, modification, facet effects and mechanisms. Environ. Sci. Nano 2014, 1, 90–112. [Google Scholar] [CrossRef]
- Zeng, L.; Zhe, F.; Wang, Y.; Zhang, Q.L.; Zhao, X.Y.; Hu, X.; Wu, Y.; He, Y.M. Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation. J. Colloid Interface Sci. 2019, 539, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.Q.; Jin, X.L.; Ji, X.X.; Liu, C.; Su, Y.R.; Xie, H.Q.; Liu, C. Facet-dependent photocatalytic reduction of CO2 on BiOI nanosheets. Chem. Eng. J. 2016, 291, 39–46. [Google Scholar] [CrossRef]
- Guo, J.Y.; Li, X.; Liang, J.; Yuan, X.Z.; Jiang, L.B.; Yu, H.B.; Sun, H.B.; Zhu, Z.Q.; Ye, S.J.; Tang, N.; et al. Fabrication and regulation of vacancy-mediated bismuth oxyhalide towards photocatalytic application: Development status and tendency. Coord. Chem. Rev. 2021, 443, 214033. [Google Scholar] [CrossRef]
- Gao, P.; Yang, Y.N.; Yin, Z.; Kang, F.X.; Fan, W.; Sheng, J.Y.; Feng, L.; Liu, Y.Z.; Du, Z.W.; Zhang, L.Q. A critical review on bismuth oxyhalide based photocatalysis for pharmaceutical active compounds degradation: Modifications, reactive sites, and challenges. J. Hazard. Mater. 2021, 412, 125186. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.; Li, H.B.; Fan, W.J.; Zhao, F.Y.; Qiu, W.T.; Ji, H.B.; Tong, Y.X. Defect engineering of bismuth oxyiodide by IO3− doping for increasing charge transport in photocatalysis. ACS Appl. Mater. Interfaces 2016, 8, 27859–27867. [Google Scholar] [CrossRef]
- Xiong, J.; Song, P.; Di, J.; Li, H.M. Bismuth-rich bismuth oxyhalides: A new opportunity to trigger high-efficiency photocatalysis. J. Mater. Chem. A 2020, 8, 21434–21454. [Google Scholar] [CrossRef]
- Xiong, J.; Di, J.; Li, H.M. Interface engineering in low-dimensional bismuth-based materials for photoreduction reactions. J. Mater. Chem. A 2021, 9, 2662–2677. [Google Scholar] [CrossRef]
- Chen, L.P.; Li, C.E.; Zhao, Y.F.; Wu, J.; Li, X.K.; Qiao, Z.W.; He, P.; Qi, X.M.; Liu, Z.H.; Wei, G.Q. Construction 3D Bi/Bi4O5I2 microspheres with rich oxygen vacancies by one-pot solvothermal method for enhancing photocatalytic activity on mercury removal. Chem. Eng. J. 2022, 425, 131599. [Google Scholar] [CrossRef]
- Suzuki, H.; Kunioku, H.; Higashi, M.; Tomita, O.; Kato, D.; Kageyama, H.; Abe, R. Lead bismuth oxyhalides PbBiO2X (X = Cl, Br) as visible-light-responsive photocatalysts for water oxidation: Role of lone-pair electrons in valence band engineering. Chem. Mater. 2018, 30, 5862–5869. [Google Scholar] [CrossRef]
- Olchowka, J.; Kabbour, H.; Colmont, M.; Adlung, M.; Wickleder, C.; Mentre, O. ABO2X (A = Cd, Ca, Sr, Ba, Pb; X = halogen) sillen X1 series: Polymorphism versus optical properties. Inorg. Chem. 2016, 55, 7582–7592. [Google Scholar] [CrossRef]
- Lee, A.H.; Wang, Y.C.; Chen, C.C. Composite photocatalyst, tetragonal lead bismuth oxyiodide/bismuth oxyiodide/graphitic carbon nitride: Synthesis, characterization, and photocatalytic activity. J. Colloid Interface Sci. 2019, 533, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.Y.; Lin, J.H.; Dai, Y.M.; Chen, L.W.; Huang, S.T.; Yeh, T.W.; Chang, J.L.; Chen, C.C. Preparation of perovskites PbBiO2I/PbO exhibiting visible-light photocatalytic activity. Catal. Today 2018, 314, 28–41. [Google Scholar] [CrossRef]
- Yu, H.J.; Shi, R.; Zhao, Y.F.; Waterhouse, G.I.N.; Wu, L.Z.; Tung, C.H.; Zhang, T.R. Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 2016, 28, 9454–9477. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Shen, W.; Gao, Z.Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef]
- Hu, Q.S.; Ji, M.X.; Di, J.; Wang, B.; Xia, J.X.; Zhao, Y.P.; Li, H.M. Ionic liquid-induced double regulation of carbon quantum dots modified bismuth oxychloride/bismuth oxybromide nanosheets with enhanced visible-light photocatalytic activity. J. Colloid Interface Sci. 2018, 519, 263–272. [Google Scholar] [CrossRef]
- Wang, B.Y.; Song, H.Q.; Qu, X.L.; Chang, J.B.; Yang, B.; Lu, S.Y. Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coord. Chem. Rev. 2021, 442, 214010. [Google Scholar] [CrossRef]
- Chung, S.; Revia, R.A.; Zhang, M.Q. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 2021, 33, 1904362. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.X.; Ji, M.X.; Wang, B.; Yin, S.; Zhang, Q.; Chen, Z.G.; Li, H.M. Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight. ACS Appl. Mater. Interfaces 2015, 7, 20111–20123. [Google Scholar] [CrossRef]
- Wang, B.; Di, J.; Lu, L.; Yan, S.C.; Liu, G.P.; Ye, Y.Z.; Li, H.T.; Zhu, W.S.; Li, H.M.; Xia, J.X. Sacrificing ionic liquid-assisted anchoring of carbonized polymer dots on perovskite-like PbBiO2Br for robust CO2 photoreduction. Appl. Catal. B Environ. 2019, 254, 551–559. [Google Scholar] [CrossRef]
- Li, M.; Yin, S.; Wu, T.; Di, J.; Ji, M.X.; Wang, B.; Chen, Y.; Xia, J.X.; Li, H.M. Controlled preparation of MoS2/PbBiO2I hybrid microspheres with enhanced visible-light photocatalytic behavior. J. Colloid Interface Sci. 2018, 517, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.X.; Di, J.; Li, H.T.; Xu, H.; Li, H.M.; Guo, S.J. Ionic liquid-induced strategy for carbon quantum dots/BiOX (X=Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis. Appl. Catal. B Environ. 2016, 181, 260–269. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.X.; Ji, M.X.; Wang, B.; Li, X.W.; Zhang, Q.; Chen, Z.G.; Li, H.M. Nitrogen-doped carbon quantum dots/BiOBr ultrathin nanosheets: In situ strong coupling and improved molecular oxygen activation ability under visible light irradiation. ACS Sustain. Chem. Eng. 2016, 4, 136–146. [Google Scholar] [CrossRef]
- Hu, Q.S.; Chen, Y.; Li, M.; Zhang, Y.; Wang, B.; Zhao, Y.P.; Xia, J.X.; Yin, S.; Li, H.M. Construction of NH2-UiO-66/BiOBr composites with boosted photocatalytic activity for the removal of contaminants. Colloids Surf. A PhysicoChem. Eng. Asp. 2019, 579, 123625. [Google Scholar] [CrossRef]
- Sun, W.Q.; Hu, Q.S.; Wu, T.; Wang, Z.X.; Yi, J.J.; Yin, S. Construction of 0D/3D carbon quantum dots modified PbBiO2Cl nicrospheres with accelerated charge carriers for promoted visible-light-driven degradation of organic contaminants. Colloids Surf. A PhysicoChem. Eng. Asp. 2022, 642, 128591. [Google Scholar] [CrossRef]
- Ding, P.H.; Di, J.; Chen, X.L.; Ji, M.X.; Gu, K.Z.; Yin, S.; Liu, G.P.; Zhang, F.; Xia, J.X.; Li, H.M. S,N codoped graphene quantum dots embedded in (BiO)2CO3: Incorporating enzymatic-like catalysis in photocatalysis. ACS Sustain. Chem. Eng. 2018, 6, 10229–10240. [Google Scholar] [CrossRef]
- Xi, Y.M.; Mo, W.H.; Fan, Z.X.; Hu, L.X.; Chen, W.B.; Zhang, Y.; Wang, P.; Zhong, S.X.; Zhao, Y.L.; Bai, S. A mesh-like BiOBr/Bi2S3 nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO2 photoreduction. J. Mater. Chem. A 2022, 10, 20934–20945. [Google Scholar] [CrossRef]
- Li, K.H.; Xiao, Y.; Zhao, Y.C.; Xia, Y.H.; Ding, J.H.; He, Q.G.; Ling, J.; Li, G.L. A metal-free voltammetric sensor for sensitive determination of Rhodamine B using carboxyl-functionalized carbon nanomaterials. Inorg. Chem. Commun. 2022, 145, 110025. [Google Scholar] [CrossRef]
- Wang, J.J.; Tang, L.; Zeng, G.M.; Deng, Y.C.; Dong, H.R.; Liu, Y.N.; Wang, L.L.; Peng, B.; Zhang, C.; Chen, F. 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photocatalytic for full spectrum light utilization and mechanism insight. Appl. Catal. B Environ. 2018, 222, 115–123. [Google Scholar] [CrossRef]
- Xu, L.; Li, H.N.; Yan, P.C.; Xia, J.X.; Qiu, J.X.; Xu, Q.; Zhang, S.Q.; Li, H.M.; Yuan, S.Q. graphitic carbon nitride/BiOCl composites for sensitive photoelectrochemical detection of ciprofloxacin. J. Colloid Interface Sci. 2016, 483, 241–248. [Google Scholar] [CrossRef]
- Yuan, X.Z.; Zhang, J.; Yang, M.; Si, M.Y.; Jiang, L.B.; Li, Y.F.; Yu, H.B.; Zhang, J.; Zeng, G.M. Nitrogen doped carbon quantum dots promoted the construction of Z-scheme system with enhanced molecular oxygen activation ability. J. Colloid Interface Sci. 2019, 541, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.W.; Wang, P.; Lv, X.Y.; Niu, X.Y.; Lin, X.Y.; Zhong, S.X.; Wang, D.M.; Lin, H.J.; Chen, J.R.; Bai, S. Stacking engineering of semiconductor heterojunctions on hollow carbon spheres for boosting photocatalytic CO2 reduction. ACS Catal. 2022, 12, 2569–2580. [Google Scholar] [CrossRef]
- Wang, A.; Wu, S.J.; Dong, J.L.; Wang, R.X.; Wang, J.W.; Zhang, J.L.; Zhong, S.X.; Bai, S. Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation. Chem. Eng. J. 2021, 404, 127145. [Google Scholar] [CrossRef]
- Chen, Q.; Mo, W.H.; Yang, G.D.; Zhong, S.X.; Lin, H.J.; Chen, J.R.; Bai, S. Significantly enhanced photocatalytic CO2 reduction by surface amorphization of cocatalysts. Small 2021, 17, 2102105. [Google Scholar] [CrossRef]
- Quan, Y.; Wang, B.; Liu, G.P.; Li, H.M.; Xia, J.X. Carbonized polymer dots modified ultrathin Bi12O17Cl2 nanosheets Z-scheme heterojunction for robust CO2 photoreduction. Chem. Eng. Sci. 2021, 232, 116338. [Google Scholar] [CrossRef]
- Yan, X.W.; Wang, B.; Zhao, J.Z.; Liu, G.P.; Ji, M.X.; Zhang, X.L.; Chu, P.K.; Li, H.M.; Xia, J.X. Hierarchical columnar ZnIn2S4/BiVO4 Z-scheme heterojunctions with carrier highway boost photocatalytic mineralization of antibiotics. Chem. Eng. J. 2023, 452, 139271. [Google Scholar] [CrossRef]
- Luo, B.; Wu, C.F.; Zhang, F.Z.; Wang, T.T.; Yao, Y.B. Preparation of porous rllipsoidal bismuth oxyhalide microspheres and their photocatalytic performances. Materials 2022, 15, 6035. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.S.; Di, J.; Wang, B.; Ji, M.X.; Chen, Y.; Xia, J.X.; Li, H.M.; Zhao, Y.P. In-situ preparation of NH2-MIL-125(Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity. Appl. Surf. Sci. 2019, 466, 525–534. [Google Scholar] [CrossRef]
- Chen, X.; Liu, G.P.; Xu, X.Y.; Wang, B.; Sun, S.X.; Xia, J.X.; Li, H.M. Oxygen vacancies mediated Bi12O17Cl2 ultrathin nanobelts: Boosting molecular oxygen activation for efficient organic pollutants degradation. J. Colloid Interface Sci. 2022, 609, 23–32. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, R.; Liu, X.; Zhang, H.; Ye, M.; Wang, Z.; Yi, J.; Gu, B.; Hu, Q. Carbon Quantum Dots Accelerating Surface Charge Transfer of 3D PbBiO2I Microspheres with Enhanced Broad Spectrum Photocatalytic Activity—Development and Mechanism Insight. Materials 2023, 16, 1111. https://doi.org/10.3390/ma16031111
Yan R, Liu X, Zhang H, Ye M, Wang Z, Yi J, Gu B, Hu Q. Carbon Quantum Dots Accelerating Surface Charge Transfer of 3D PbBiO2I Microspheres with Enhanced Broad Spectrum Photocatalytic Activity—Development and Mechanism Insight. Materials. 2023; 16(3):1111. https://doi.org/10.3390/ma16031111
Chicago/Turabian StyleYan, Ruyu, Xinyi Liu, Haijie Zhang, Meng Ye, Zhenxing Wang, Jianjian Yi, Binxian Gu, and Qingsong Hu. 2023. "Carbon Quantum Dots Accelerating Surface Charge Transfer of 3D PbBiO2I Microspheres with Enhanced Broad Spectrum Photocatalytic Activity—Development and Mechanism Insight" Materials 16, no. 3: 1111. https://doi.org/10.3390/ma16031111
APA StyleYan, R., Liu, X., Zhang, H., Ye, M., Wang, Z., Yi, J., Gu, B., & Hu, Q. (2023). Carbon Quantum Dots Accelerating Surface Charge Transfer of 3D PbBiO2I Microspheres with Enhanced Broad Spectrum Photocatalytic Activity—Development and Mechanism Insight. Materials, 16(3), 1111. https://doi.org/10.3390/ma16031111