Catalytic Activity of LaFe0.4Ni0.6O3/CeO2 Composites in CO and CH4 Oxidation Depending on Their Preparation Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Materials Characterization
2.3. Catalytic Activity
3. Results and Discussion
3.1. Phase Composition
3.2. Microstructure, Bulk, and Surface Particles Composition
3.3. H2-TPR Data
3.4. Catalytic Activity in CO and CH4 Oxidation
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Falcon, H.; Carbonio, R.E.; Fierro, J.L.G. Correlation of Oxidation States in LaFexNi1−xO3+δ oxides with catalytic activity for H2O2 decomposition. Catalysis 2001, 203, 264–272. [Google Scholar] [CrossRef]
- Konysheva, E.; Francis, S.M.; Irvine, J.T.S. Crystal structure, oxygen nonstoichiometry, and conductivity of mixed ionic-electronic conducting perovskite composites with CeO2. J. Electrochem. Soc. 2010, 157, B159–B165. [Google Scholar] [CrossRef]
- Konysheva, E.; Irvine, J.T.S. The La0.95Ni0.6Fe0.4O3-CeO2 system: Phase equilibria, crystal structure of components and transport properties. J. Solid State Chem. 2011, 184, 1499–1504. [Google Scholar] [CrossRef]
- Bork, A.H.; Carrillo, A.J.; Hood, Z.D.; Yildiz, B.; Rupp, J.L.M. Oxygen Exchange in Dual-Phase La0.65Sr0.35MnO3–CeO2 Composites for Solar Thermochemical Fuel Production. ACS Appl. Mater. Interfaces 2020, 12, 32622–32632. [Google Scholar] [CrossRef]
- Li, X.; Gao, H. Role of ceria in the improvement of NO removal of lanthanum-based perovskite-type catalysts. RSC Adv. 2018, 8, 11778. [Google Scholar] [CrossRef] [Green Version]
- Kirchnerova, J.; Alifanti, M.; Delmon, B. Evidence of phase cooperation in the LaCoO3–CeO2–Co3O4 catalytic system in relation to activity in methane combustion. Appl. Catal. A Gen. 2002, 231, 65–80. [Google Scholar] [CrossRef]
- Forni, L.; Oliva, C.; Vatti, F.P.; Kandala, M.A.; Ezerets, A.M.; Vishniakov, A.V. La-Ce-Co perovskites as catalysts for exhaust gas depollution. Appl. Catal. B Environ. 1996, 7, 269–284. [Google Scholar] [CrossRef]
- Alifanti, M.; Blangenois, N.; Florea, M.; Delmon, B. Supported Co-based perovskites as catalysts for total oxidation of methane. Appl. Catal. A Gen. 2005, 280, 255–265. [Google Scholar] [CrossRef]
- Gellings, P.J.; Bouwmeester, H.J.M. Ion and mixed conducting oxides as catalysts. Catal. Today 1992, 12, 1–101. [Google Scholar] [CrossRef] [Green Version]
- Stoian, M.; Rogé, V.; Lazar, L.; Maurer, T.; Védrine, J.C.; Marcu, I.-C.; Fechete, I. Total Oxidation of Methane on Oxide and Mixed Oxide Ceria-Containing Catalysts. Catalysts 2021, 11, 427. [Google Scholar] [CrossRef]
- Pinaeva, L.G.; Isupova, L.A.; Prosvirin, I.P.; Sadovskaya, E.M.; Danilova, I.G.; Ivanov, D.V.; Gerasimov, E.Y. La–Fe–O/CeO2 Based Composites as the Catalysts for High Temperature N2O Decomposition and CH4 Combustion. Catal. Lett. 2013, 143, 1294–1303. [Google Scholar] [CrossRef]
- Provendier, H.; Petit, C.; Estoumes, C.; Kiennemann, A. Dry reforming of methane. Interest of La-Ni-Fe solid solutions compared to LaNiO3 and LaFeO3. Stud. Surf. Sci. Catal. 1998, 119, 741–746. [Google Scholar]
- Provendier, H.; Petit, C.; Kiennemann, A. Steam reforming of methane on LaNi1-xFexO3 (0 ≤ x ≤ 1) perovskites. Reactivity and characterisation after test. C. R. Acad. Sci. Paris Ser. IIc Chem./Chem. 2001, 4, 57–66. [Google Scholar]
- Kumar, R.; Coudhary, R.J.; Khan, M.W.; Srivastava, J.P.; Bao, C.W.; Tsai, H.M.; Chiou, J.W.; Asokan, K.; Pong, W.F. Structural, electrical transport and x-ray absorption spectroscopy studies of LaFe1−xNixO3. J. Appl. Phys. 2005, 97, 093526. [Google Scholar] [CrossRef]
- Sukpirom, N.; Iamsaard, S.; Charojrochkul, S.; Yeyongchaiwat, J. Synthesis and properties of LaNi1-xFexO3-δ as cathode materials in SOFC. J. Mater. Sci. 2011, 45, 6500–6507. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Montini, T.; Tavagnacco, C.; Fonda, E.; Fornasiero, P.; Graziani, M. Preparation, Characterization, and electrochemical properties of pure and composite LaNi0.6F0.4O3-based cathodes for IT-SOFC. Chem. Mater. 2007, 19, 5926–5936. [Google Scholar] [CrossRef]
- Chiba, R.; Komatsu, T.; Orui, H.; Taguchi, H.; Nozawa, K.; Arai, H. An SOFC cathode composed of LaNi0.6F0.4O3 and Ce(Ln)O2 (Ln = Sm, Gd, Pr). J. Korean Ceram. Soc. 2008, 45, 766–771. [Google Scholar] [CrossRef]
- Yaroslavtsev, I.Y.; Bogdanovich, N.M.; Vdovin, G.K.; Dem’yanenko, T.A.; Bronin, D.I.; Isupova, L.A. Cathodes based on rare-earth metal nickelate ferrites prepared from industrial raw materials for solid oxide fuel cells. Russ. J. Electrochem. 2014, 50, 548–553. [Google Scholar] [CrossRef]
- Pavlova, S.; Kharlamova, T.; Sadykov, V.; Krieger, T.; Muzykantov, V.; Bespalko, Y.; Ishenko, A.; Rogov, V.; Belyaev, V.; Okhlupin, Y.; et al. Structural features and transport properties of La(Sr)Fe1-xNixO3-δ–Ce0.9Gd0.1O2-δ nanocomposites-advanced materials for IT SOFC cathodes. Heat Transf. Eng. 2013, 34, 904–916. [Google Scholar] [CrossRef]
- Isupova, L.A.; Tsybulya, S.V.; Kryukova, G.N.; Alikina, G.M.; Boldyreva, N.N.; Yakovleva, I.S.; Ivanov, V.P.; Sadykov, V.A. Real structure and catalytic activity of La1-xCaxMnO3+δ perovskites. J. Solid State Ion. 2001, 141–142, 417–425. [Google Scholar] [CrossRef]
- Dulian, P.; Bąk, W.; Wieczorek-Ciurowa, K.; Kajtoch, C. Controlled mechanochemical synthesis and properties of a selected perovskite-type electroceramics. Mater. Sci. 2013, 31, 462–470. [Google Scholar] [CrossRef]
- Stojanovic, B.D. Mechanochemical synthesis of ceramic powders with perovskite structure. J. Mater. Process. Technol. 2003, 143, 78–81. [Google Scholar] [CrossRef]
- Zyryanov, V.V.; Sadykov, V.A.; Uvarov, N.F.; Alikina, G.M.; Lukashevich, A.I.; Neofitides, S.G.; Criado, J.M. Mechanosynthesis of complex oxides with fluorite and perovskite-related structures and their sintering into nanocomposites with mixed ionic–electronic conductivity. Solid State Ion. 2005, 176, 2813–2818. [Google Scholar] [CrossRef]
- Isupova, L.A.; Obyskalova, E.A.; Rogov, V.A.; Tsybulya, S.V.; Dovlitova, L.S.; Burgina, E.B.; Ischenko, A.V.; Zaikovskii, V.I.; Sadykov, V.A.; Orlovskaya, N. Doped ceria—LaMeO3 (Me = Mn, Fe, Co) nanocomposites: Synthesis via mechanochemical activation route and properties. Mater. Res. Soc. Symp. Proc. 2006, 885E, 0885-A03-04.1. [Google Scholar]
- Gorbunova, V.A.; Sliapniova, L.M.; Gorbunov, A.V. Thermochemical Preparation and Properties of Low-Cost Polylanthanide Manganite Materials of Ln(La, Ce, Nd, Pr)xCayMnO3-Type with Perovskite-Fluorite Structure. Sci. Tech. 2020, 19, 528–535. (In Russian) [Google Scholar]
- Zhao, Z.; Zou, M.; Huang, H.; Wofford, H.; Tong, J. Stable perovskite-fluorite dual-phase composites synthesized by one-pot solid-state reactive sintering for protonic ceramic fuel cells. Ceram. Int. 2021, 47, 32856–32866. [Google Scholar] [CrossRef]
- Ohzeki, T.; Hashimoto, T.; Shozugawa, K.; Matsuo, M. Preparation of LaNi1-xFexO3 Single Phase and Characterization of their Phase Transition Behaviors. Solid State Ion. 2010, 181, 1771–1782. [Google Scholar] [CrossRef]
- Pechini, M.P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor. US Patent No. 3,330,697, 11 July 1967. [Google Scholar]
- Tsybulya, S.V.; Cherepanova, S.V.; Solovʹeva, L.P. Polycrystal Software Package for IBM/PC. J. Struct. Chem. 1996, 37, 332–334. [Google Scholar] [CrossRef]
- Scofield, J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
- XPSPEAK 4.1. Available online: http://xpspeak.software.informer.com/4.1/ (accessed on 10 January 2023).
- Ren, H.; Wang, Z.; Chen, X.; Jing, Z.; Qu, Z.; Huang, L. Effective mineralization of p-nitrophenol by catalytic ozonation using Ce-substituted La1−xCexFeO3 catalyst. Chemosphere 2021, 285, 131473. [Google Scholar] [CrossRef]
- Isaacs, M.A.; Davies-Jones, J.; Davies, P.R.; Guan, S.; Lee, R.; Morgan, D.J.; Palgrave, R. Advanced XPS characterization: XPS-based multi-technique analyses for comprehensive understanding of functional materials. Mater. Chem. Front. 2021, 5, 7931. [Google Scholar] [CrossRef]
- van der Heide, P.A.W. Systematic x-ray photoelectron spectroscopic study of La1-xSrx-based perovskite-type oxides. Surf. Interface Anal. 2002, 33, 414–425. [Google Scholar] [CrossRef]
- Yakovleva, I.S.; Isupova, L.A.; Rogov, V.A.; Sadykov, V.A. Forms of oxygen in La1−xCaxMnO3+δ (x = 0–1) perovskites and their reactivities in oxidation reactions. Kinet. Catal. 2008, 49, 261–270. [Google Scholar] [CrossRef]
- Liu, W.; Flytzanistephanopoulos, M. Total Oxidation of Carbon-Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts. J. Catal. 1995, 153, 317–332. [Google Scholar] [CrossRef]
- Ivanov, D.V.; Pinaeva, L.G.; Sadovskaya, E.M.; Isupova, L.A. Influence of the mobility of oxygen on the reactivity of La1−xSrxMnO3 perovskites in methane oxidation. Kinet. Catal. 2011, 52, 401–408. [Google Scholar] [CrossRef]
No. | Reagents for Samples Preparation | La/Ce | Preparation Details | Phase Composition |
---|---|---|---|---|
1 | La, Fe, and Ni nitrate salts taken in a stoichiometric ratio | 1/0 | Prepared via the Pechini route precursor 1: milled and then calcined at 900 °C, 8 h | LaFe0.4Ni0.6O3 |
2 | Ce nitrate salt | 0/1 | Prepared via Pechini route precursor 2: milled and then calcined at 900 °C, 8 h | CeO2 |
3 | La, Fe, Ni, and Ce nitrate salts taken in a stoichiometric ratio | 1/1 | Prepared via one pot Pechini route precursor 3: milled and then calcined at 900 °C, 8 h | * LaFe0.4Ni0.6O3, * CeO2 |
4 | Sample 1 + sample 2 | 1/1 | Sample 1 and sample 2 with a La:Ce ratio = 1:1 were milled and then calcined at 900 °C, 8 h | LaFe0.4Ni0.6O3, CeO2 |
5 | Precursor 1 + precursor 2 | 1/1 | Precursor 1 and precursor 2 with a La:Ce ratio = 1:1 were milled and then calcined at 900 °C, 8 h | LaFe0.4Ni0.6O3, CeO2 |
No | Cell Parameters and X-ray Crystallite Size for Phases | S sp., m2g−1 | |||||
---|---|---|---|---|---|---|---|
LaFe0.4Ni0.6O3 | CeO2 | ||||||
a, Å | b, Å | c, Å | CS, Å | a, Å | CS, Å | ||
1 | 5.507(1) | 5.507(1) | 13.304(2) | 500 | 5.5 | ||
2 | 5.419(1) | 450 | 6.8 | ||||
3 | 5.544(3) | 7.803(5) | 5.453(3) | 250 | 2.0 | ||
4 | 5.513(2) | 5.513(2) | 13.308(5) | 400 | 5.423(1) | 400 | 5.2 |
5 | 5.511(2) | 5.511(2) | 13.299(4) | 400 | 5.419(1) | 400 | 7.3 |
N | Sample | La/Ce | (Fe + Ni)/(Ce + La) | C, % | O, % | Fe, % | La, % | Ce, % | Ni, % | O(529)/O(531) |
---|---|---|---|---|---|---|---|---|---|---|
1 | LaFe0.4Ni0.6O3 | - | 0.48 | 59.7 | 33.2 | 0.7 | 4.8 | 0 | 1.6 | 0.98 |
3 | LaFe0.4Ni0.6O3/CeO2 | 1.06 | 0.24 | 40.5 | 45.4 | 1.2 | 5.8 | 5.5 | 1.6 | 2.07 |
4 | LaFe0.4Ni0.6O3/CeO2 | 1.36 | 0.35 | 41.0 | 44.4 | 1.5 | 6.2 | 4.6 | 2.3 | 1.92 |
5 | LaFe0.4Ni0.6O3/CeO2 | 0.83 | 0.29 | 40.4 | 45.2 | 1.1 | 5.1 | 6.1 | 2.1 | 2.47 |
Sample | Total Consumption Up to 900 °C, mol H2 g−1 | Consumption in the First Peak, mol H2 g−1 | First Peak Temperature Range, °C |
---|---|---|---|
1 | 6.14 × 10−3 | 1.25 × 10−3 | 60–400 |
2 | 1.17 × 10−3 | 0.15 × 10−3 | 60–550 |
3 | 2.81 × 10−3 | 1.38 × 10−3 | 60–600 |
4 | 3.14 × 10−3 | 0.64 × 10−3 | 60–400 |
5 | 3.17 × 10−3 | 0.65 × 10−3 | 60–400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isupova, L.; Gerasimov, E.; Prosvirin, I.; Rogov, V. Catalytic Activity of LaFe0.4Ni0.6O3/CeO2 Composites in CO and CH4 Oxidation Depending on Their Preparation Conditions. Materials 2023, 16, 1142. https://doi.org/10.3390/ma16031142
Isupova L, Gerasimov E, Prosvirin I, Rogov V. Catalytic Activity of LaFe0.4Ni0.6O3/CeO2 Composites in CO and CH4 Oxidation Depending on Their Preparation Conditions. Materials. 2023; 16(3):1142. https://doi.org/10.3390/ma16031142
Chicago/Turabian StyleIsupova, Lyubov, Evgeny Gerasimov, Igor Prosvirin, and Vladimir Rogov. 2023. "Catalytic Activity of LaFe0.4Ni0.6O3/CeO2 Composites in CO and CH4 Oxidation Depending on Their Preparation Conditions" Materials 16, no. 3: 1142. https://doi.org/10.3390/ma16031142
APA StyleIsupova, L., Gerasimov, E., Prosvirin, I., & Rogov, V. (2023). Catalytic Activity of LaFe0.4Ni0.6O3/CeO2 Composites in CO and CH4 Oxidation Depending on Their Preparation Conditions. Materials, 16(3), 1142. https://doi.org/10.3390/ma16031142