Leaching Stability and Redox Activity of Copper-MFI Zeolites Prepared by Solid-State Transformations: Comparison with Ion-Exchanged and Impregnated Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalyst Preparation
2.3. Catalyst Characterization
3. Results and Discussion
3.1. Leaching Stability
3.2. XRD Study of Cu-Containing Silicalites and Alumosilicalites with MFI Topology
3.3. EPR and UV-Vis DR Study of Cu-Containing MFI-Silicalites and Zeolites with Low Copper Loading
3.3.1. EPR Data
3.3.2. UV-Vis DR Data
3.4. EPR and UV-Vis DR Study of Cu-Containing MFI-Silicalites and Zeolite with High Copper Loading
3.4.1. EPR Data
3.4.2. UV-Vis DR Data
3.5. Redox Performance of Cu-Containing Zeolites
3.6. Leaching Stability of Cu-Containing Zeolites Vrs Copper State
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iwamoto, M.; Yahiro, H.; Mine, Y.; Kagawa, S. Excessively Copper Ion-exchanged ZSM-5 Zeolite as Highly Active Catalysts for Direct Decomposition of Nitrogen Monoxide. Chem. Lett. 1989, 2, 213–216. [Google Scholar] [CrossRef]
- Smeets, P.J.; Sels, B.F.; van Teeffelen, R.M.; Leeman, H.; Hensen, E.J.M.; Schoonheydt, R.A. The catalytic performance of Cu-containing zeolites in N2O decomposition and the influence of O2, NO and H2O on recombination of oxygen. J. Catal. 2008, 256, 183–191. [Google Scholar] [CrossRef]
- Held, W.; Konig, A.; Richter, T.; Puppe, L. Catalytic NOx Reduction in Net Oxidizing Exhaust Gas. SAE Tech. Pap. Ser. 1990, 900496, 13–18. [Google Scholar]
- Iwamoto, M.; Hamada, H. Removal of nitrogen monoxide from exhaust gases through novel catalytic processes. Catal. Today 1991, 10, 57–71. [Google Scholar] [CrossRef]
- Sjovall, H.; Olsson, L.; Fridell, E.; Blint, R.J. Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5 The effect of changing the gas composition. Appl. Catal. B Environ. 2006, 64, 180–188. [Google Scholar] [CrossRef]
- Bates, S.A.; Verma, A.A.; Paolucci, C.; Parekh, A.A.; Anggara, T.; Yezerets, A.; Schneider, W.F.; Miller, J.T.; Delgass, W.N.; Ribeiro, F.H. Methods for NH3 titration of Brønsted acid sites in Cu-zeolites that catalyze the selective catalytic reduction of NOx with NH3. J. Catal. 2014, 312, 87–97. [Google Scholar] [CrossRef]
- Liotta, L.F.; Gruttadauria, M.; Di Carlo, G.; Perrini, G.; Librando, V. Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity. J. Hazard. Mater. 2009, 162, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Dukkanci, M.; Gunduz, G.; Yilmaz, S.; Prihod’ko, R.V. Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis. J. Hazard. Mat. 2010, 181, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Valkaj, K.M.; Katovic, A.; Zrncevic, S. Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst. J. Hazard. Mater. 2007, 144, 663–667. [Google Scholar] [CrossRef]
- Taran, O.P.; Yashnik, S.A.; Ayusheev, A.B.; Piskun, A.S.; Prihod’ko, R.V.; Ismagilov, Z.R.; Goncharuk, V.V.; Parmon, V.N. Cu-containing MFI zeolites as catalysts for wet peroxide oxidation of formic acid as model organic contaminant. Appl. Catal. B 2013, 140–141, 506–515. [Google Scholar] [CrossRef]
- Taran, O.P.; Zagoruiko, A.N.; Ayusheev, A.B.; Yashnik, S.A.; Prihod’ko, R.V.; Ismagilov, Z.R.; Goncharuk, V.V.; Parmon, V.N. Cu and Fe-containing ZSM-5 zeolites as catalysts for wet peroxide oxidation of organic contaminants: Reaction kinetics. Res. Chem. Intermed. 2015, 41, 9521–9537. [Google Scholar] [CrossRef]
- Taran, O.P.; Zagoruiko, A.N.; Ayusheev, A.B.; Yashnik, S.A.; Prihod’ko, R.V.; Ismagilov, Z.R.; Goncharuk, V.V.; Parmon, V.N. Wet peroxide oxidation of phenol over Cu-ZSM-5 catalyst in a flow reactor. Kinetics and diffusion study. Chem. Engin. J. 2015, 282, 108–115. [Google Scholar] [CrossRef]
- Yashnik, S.A.; Taran, O.P.; Surovtsova, T.A.; Ayusheev, A.B.; Parmon, V.N. Cu- and Fe-substituted ZSM-5 zeolite as an effective catalyst for wet peroxide oxidation of Rhodamine 6G Dye. J. Envir. Chem. Eng. 2022, 10, 107950. [Google Scholar] [CrossRef]
- Hammond, C.; Forde, M.M.; Ab Rahim, M.H.; Thetford, A.; He, Q.; Jenkins, R.L.; Dimitratos, N.; Lopez-Sanchez, J.A.; Dummer, N.F.; Murphy, D.M.; et al. Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copper-Promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 2012, 51, 5129–5133. [Google Scholar] [CrossRef]
- Xu, J.; Armstrong, R.D.; Shaw, G.; Dummer, N.F.; Freakley, S.J.; Taylor, S.H.; Hutchings, G.J. Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor. Catal. Today 2016, 270, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Yashnik, S.A.; Boltenkov, V.V.; Babushkin, D.E.; Taran, O.P.; Parmon, V.N. Methane Oxidation by H2O2 over Different Cu-Species of Cu-ZSM-5 Catalysts. Top. Catal. 2020, 63, 203–221. [Google Scholar] [CrossRef]
- Wulfers, M.J.; Teketel, S.; Ipek, B.; Lobo, R.F. Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes. Chem. Commun. 2015, 51, 4447–4450. [Google Scholar] [CrossRef] [PubMed]
- Newton, M.A.; Knorpp, A.J.; Sushkevich, V.L.; Palagin, D.; van Bokhoven, J.A. Active Sites and Mechanisms in the Direct Conversion of Methane to Methanol Using Cu in Zeolitic Hosts: A Critical Examination. Chem. Soc. Rev. 2020, 49, 1449–1486. [Google Scholar] [CrossRef] [Green Version]
- Gabrienko, A.A.; Kolganov, A.A.; Arzumanov, S.S.; Yashnik, S.A.; Kriventsov, V.V.; Freude, D.; Stepanov, A.G. Effect of Copper State in Cu/H-ZSM-5 on Methane Activation by Brønsted Acid Sites, Studied by 1H MAS NMR In Situ Monitoring the H/D Hydrogen Exchange of the Alkane with Brønsted Acid Sites. J. Phys. Chem. C. 2021, 125, 2182–2193. [Google Scholar] [CrossRef]
- Yashnik, S.A.; Ismagilov, Z.R.; Anufrienko, V.F. Catalytic Properties and Electronic Structure of Copper Ions in Cu-ZSM-5. Catal. Today 2005, 110, 310–322. [Google Scholar] [CrossRef]
- Yashnik, S.; Ismagilov, Z. Cu-Substituted ZSM-5 Catalyst: Controlling of DeNOx Reactivity via Ion-Exchange Mode with Copper–Ammonia Solution. Appl. Catal. B 2015, 170–171, 241–254. [Google Scholar] [CrossRef]
- Yashnik, S.A.; Salnikov, A.V.; Vasenin, N.T.; Anufrienko, V.F.; Ismagilov, Z.R. Regulation of the copper-oxide cluster structure and DeNOx activity of Cu-ZSM-5 catalysts by variation of OH/Cu2+. Catal. Today 2012, 197, 214–227. [Google Scholar] [CrossRef]
- Karge, H.G.; Wichterlova, B.; Beyer, H.K. High-temperature Interaction of Solid Cu Chlorides and Cu Oxides in Mixtures with H-forms of ZSM-5 and Y Zeolites. J. Chem. Soc. Faraday Trans. 1992, 88, 345–1351. [Google Scholar] [CrossRef]
- Price, G.L.; Kanazirev, V.; Church, D.F. Formation of Cu-MFI NO Decomposition Catalyst via Reductive Solid-state Ion Exchange. J. Phys. Chem. 1995, 99, 864–868. [Google Scholar] [CrossRef]
- Kucherov, A.V.; Slinkin, A.A. Introduction of transition metal ions in cationic positions of high-silica zeolites by a solid state reaction, Interaction of copper compounds with H-mordenite or H-ZSM-5. Zeolites 1986, 6, 175–180. [Google Scholar] [CrossRef]
- Lamberti, C.; Bordiga, S.; Salvalaggio, M.; Spoto, G.; Zecchina, A.; Geobaldo, F.; Vlaic, G.; Bellatreccia, M. XAFS, IR, and UV−Vis Study of the CuI Environment in CuI-ZSM-5. J. Phys. Chem. B 1997, 101, 344–360. [Google Scholar] [CrossRef]
- Zhang, Y.; Drake, I.J.; Bell, A.T. Characterization of Cu-ZSM-5 Prepared by Solid-State Ion Exchange of H-ZSM-5 with CuCl. Chem. Mater. 2006, 18, 2347–2356. [Google Scholar] [CrossRef]
- Iwamoto, M.; Yahiro, H.; Tanda, K.; Mizuno, N.; Mine, Y.; Kagawa, S. Removal of Nitrogen Monoxide through a Novel Catalytic Process. 1. Decomposition on Excessively Copper Ion Exchanged ZSM-5 Zeolites. J. Phys. Chem. 1991, 95, 3727–3730. [Google Scholar] [CrossRef]
- Dedecek, J.; Sobalik, Z.; Tvaruzkova, Z.; Kaucky, D.; Wichterlova, B. Coordination of Cu ions in High-Silica Zeolite Matrices. Cu+ photoluminescence, IR of NO adsorbed on Cu2+, and Cu2+ ESR Study. J. Phys. Chem. 1995, 99, 16327–16337. [Google Scholar] [CrossRef]
- Kucherov, A.V.; Slinkin, A.A.; Kondrat’ev, D.A.; Bondarenko, T.N.; Rubinstein, A.M.; Minachev, K.M. Cu(2+)-cation location and reactivity in mordenite and ZSM-5: ESR-study. Zeolite 1985, 5, 320–324. [Google Scholar] [CrossRef]
- Handreck, G.P.; Smith, T.D. A physicochemical study of the alumination of silicalite and the dealumination of zeolite ZSM-5. Zeolites 1990, 10, 746–752. [Google Scholar] [CrossRef]
- Hadjiivanov, K.; Knozinger, H.; Milushev, A. FTIR study of low-temperature CO adsorption on Cu/silicalite-1. Catal. Commun. 2002, 3, 37–44. [Google Scholar] [CrossRef]
- Dossi, C.; Fusi, A.; Recchia, S.; Psaro, R.; Moretti, G. Cu–ZSM-5 (Si/Al = 66), Cu–Fe–S-1 (Si/Fe = 66) and Cu–S-1 catalysts for NO decomposition: Preparation, analytical characterization and catalytic activity. Microporous Mesoporous Mater. 1999, 30, 165–175. [Google Scholar] [CrossRef]
- Ferraris, G.; Moretti, G.; Fierro, G. Copper exchanged Silicalite-1: Evidence of the location of copper oxide nanoclusters in the supermicropores of S-1. Stud. Sur. Sci. Catal. 2008, 174, 925–928. [Google Scholar]
- Kuroda, Y.; Kotani, A.; Maeda, H.; Moriwaki, H.; Morimato, T. The state of excessively ion-exchanged copper in mordenite: Formation of tetragonal hydroxy-bridged copper ion. J. Chem. Soc. Faraday Trans. 1992, 88, 1583–1590. [Google Scholar] [CrossRef]
- Groothaert, M.H.; van Bokhoven, J.A.; Battiston, A.A.; Weckhuysen, B.M.; Schoonheydt, R.A. Bis(μ-oxo)dicopper in Cu-ZSM-5 and Its Role in the Decomposition of NO: A Combined in Situ XAFS, UV-Vis-Near-IR, and Kinetic Study. J. Am. Chem. Soc. 2003, 125, 7629–7640. [Google Scholar] [CrossRef] [PubMed]
- Ione, K.G.; Vostrikova, L.A.; Petrova, A.V.; Mastikhin, V.M. Synthesis and Study of Properties of ZSM-II Type Silicalites of I-VIII Group Elements. Stud. Surf. Sci. Catal. 1984, 18, 151–158. [Google Scholar]
- Anufrienko, V.F.; Poluboyarov, V.A.; Vostrikova, L.A.; Ione, K.G. Specificity of states of Cu2+ ions in ZSM-5 Zeolites due to the cooperative Janh-Teller Effect. React. Kinet. Catal. Lett. 1984, 25, 39–43. [Google Scholar] [CrossRef]
- Valkaj, K.M.; Tomasic, V.; Katovic, A.; Bielanska, E. Synthesis and characterization of Cu-MFI catalyst for the direct medium temperature range NO decomposition. Mater. Sci.-Pol. 2016, 34, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Selvam, T.; Inayat, A.; Schwieger, W. Reactivity and applications of layered silicates and layered double hydroxides. Dalton Trans. 2014, 43, 10365–10387. [Google Scholar] [CrossRef] [Green Version]
- Salou, M.; Kooli, F.; Kiyozumi, Y.; Mikamizu, F. Effect of aluminium source and content on the synthesis of zeolite ZSM-5 from kanemite via solid-state transformation. J. Mater. Chem. 2001, 11, 1476–1481. [Google Scholar] [CrossRef]
- Ciocılteu, S.M.; Salou, M.; Kiyozumi, Y.; Niwa, S.; Mizukami, F.; Haneda, M. Uniform distribution of copper and cobalt during the synthesis of SiMFI-5 from kanemite through solid-state transformation. J. Mater. Chem. 2003, 13, 602–607. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, H.; Yan, Y. Cu-MFI zeolite supported on paper-like sintered stainless fiber for catalytic wet peroxide oxidation of phenol in a batch reactor. Sep. Pur. Techn. 2018, 190, 243–251. [Google Scholar] [CrossRef]
- Krivoruchko, O.P.; Larina, T.V.; Shutilov, R.A.; Gavrilov, V.Y.; Yashnik, S.A.; Sazonov, V.A.; Molina, I.; Ismagilov, Z.R. Effect of the Electronic State and Copper Localization in ZSM-5 Pores on Performance in NO Selective Catalytic Reduction by Propane. Appl. Catal. B 2011, 103, 1–10. [Google Scholar] [CrossRef]
- Granato, T.; Katovic, A.; Valkaj, K.; Tagarelli, A.; Giordano, G. Cu-silicalite-1 catalyst for the wet hydrogen peroxide oxidation of phenol. J. Porous Mater. 2009, 16, 227–232. [Google Scholar] [CrossRef]
- Malakhov, V.V.; Boldyreva, N.N.; Vlasov, A.A.; Dovlitova, L.S. Methodology and Procedure of the Stoichiographic Analysis of Solid Inorganic Substances and Materials. J. Anal. Chem. 2011, 66, 458–464. [Google Scholar] [CrossRef]
- Prihod’ko, R.; Stolyarova, I.; Gündüz, G.; Taran, O.; Yashnik, S.; Parmon, V.; Goncharuk, V. Fe-exchanged zeolites as materials for catalytic wet peroxide oxidation. Degradation of Rodamine G dye. Appl. Catal. B Environ. 2011, 104, 201–210. [Google Scholar] [CrossRef]
- Sass, C.E.; Kevan, L. Electron Spin Echo Modulation of the Interaction of Cu+2 with framework Al in ZSM-5 zeolite. J. Phys. Chem. 1989, 93, 7856–7859. [Google Scholar] [CrossRef]
- Park, S.-K.; Kurshev, V.; Luan, Z.; Lee, C.W.; Kevan, L. Reaction of NO with copper ions in Cu(II)-exchanged ZSM-5 zeolite: Electron spin resonance, electron spin echo modulation and Fourier transform infrared spectroscopy. Microporous Mesoporous Mater. 2000, 38, 255–266. [Google Scholar] [CrossRef]
- Larsen, S.C.; Aylor, A.; Bell, A.T.; Reimer, J.A. Electron Paramagnetic resonance studies of Copper Ion-Exchanged ZSM-5. J. Phys. Chem. 1994, 98, 11533–11540. [Google Scholar] [CrossRef]
- Palomino, G.T.; Fisicaro, P.; Bordiga, S.; Zecchina, A.; Giamello, E.; Lamberti, C. Oxidation States of Copper Ions in ZSM-5 Zeolites. A Multitechnique Investigation. J. Phys. Chem. B 2000, 104, 4064–4073. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.X.; Thurston, T.R.; Tranquada, J.M.; Shirane, G. Magnetic neutron scattering study of single-crystal cupric oxide. Phys. Rev. B 1989, 39, 4343–4349. [Google Scholar] [CrossRef] [PubMed]
- Fierro, G.; Ferraris, G.; Moretti, G. CuO nanoparticles entrapped in MFI framework: Investigation of textural, magnetic and catalytic properties of Cu-ZSM-5 and Cu-S-1 catalysts. Appl. Catal. B Environ. 2009, 91, 499–506. [Google Scholar] [CrossRef]
- Lever, A.B.P. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1984; p. 863. ISBN 0444423893. [Google Scholar]
- Yashnik, S.A.; Anufrienko, V.F.; Sazonov, V.A.; Ismagilov, Z.R.; Parmon, V.N. Low-Temperature Activation of Nitrogen Oxide on Cu–ZSM-5 Catalysts. Kin. Catal. 2012, 53, 363–373. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S.; Biglino, D.; Giambello, E. Adsorption and reactivity of NO on Copper-on-Alumina Catalysts. J. Catal. 1995, 152, 75–92. [Google Scholar] [CrossRef]
- Marion, M.C.; Garboeski, E.; Primet, M. Physicochemical properties of copper oxide loaded alumina in methane combustion. J. Chem. Soc. Faraday Trans. 1990, 86, 3027–3032. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, L.; Shen, M.; Liu, D.; Wang, J.; Ding, W.; Chen, Y. Influence of supports on the activities of copper oxide species in the low-temperature NO-CO reaction. Appl. Catal. B 2001, 31, 61–69. [Google Scholar] [CrossRef]
- Shimokawabe, M.; Asakawa, H.; Takezawa, H. Characterization of copper-zirconia catalysts prepared by an impregnation method. Appl. Catal. 1990, 59, 45–58. [Google Scholar] [CrossRef]
- Liu, Z.; Amiridis, M.D.; Chen, Y. Characterization of CuO Supported on Tetragonal ZrO2 Catalysts for N2O Decomposition to N2. J. Phys. Chem. B 2005, 109, 1251–1255. [Google Scholar] [CrossRef]
- Altshuler, S.A.; Kozirev, B.M. Electron Paramagnetic Resonance in Compounds of Transition Elements, 2nd ed.; Wiley: New York, NY, USA, 1974; p. 672. ISBN 9781483225562. [Google Scholar]
- Carl, P.J.; Larsen, S.C. EPR Study of Copper-Exchanged Zeolites: Effects of Correlated g- and A-Strain, Si/Al Ratio, and Parent Zeolite. J. Phys. Chem. B 2000, 104, 6568–6575. [Google Scholar] [CrossRef]
- Carl, P.J.; Larsen, S.C. Variable-Temperature Electron Paramagnetic Resonance Studies of Copper-Exchanged Zeolites. J. Catal. 1999, 182, 208–218. [Google Scholar] [CrossRef]
- Maksimov, N.G.; Anufrienko, V.F.; Ione, K.G. EPR study of the interaction of Cu2+ ions with ammonia in Cu-Y zeolites. Doklady AN SSSR 1973, 212, 142–145. [Google Scholar]
- Sukhorukov, Y.; Loshkareva, N.N.; Samokhvalov, A.A.; Moskvin, A.S. Absorption spectra of CuO single crystals near the absorption edge and the nature of the optical gap in copper oxides. J. Exp. Theor. Phys. 1995, 81, 998–1002. [Google Scholar]
- Gizhevskii, B.A.; Sukhorukov, Y.P.; Moskvin, A.S.; Loshkareva, N.N.; Mostovshchikova, E.V.; Ermakov, A.E.; Kozlov, E.A.; Uimin, M.A.; Gaviko, V.S. Anomalies in the optical properties of nanocrystalline copper oxides CuO and Cu2O near the fundamental absorption edge. JETP 2006, 102, 297–302. [Google Scholar] [CrossRef]
- Mott, N.F.; Davies, E.A. Electronic Processes in Non-Crystalline Materials, 2nd ed.; Oxford Clarendon Press: New York, NY, USA, 1979; p. 590. [Google Scholar]
- Rehman, S.; Mumtaz, A.; Hasanain, S.K. Size effects on the magnetic and optical properties of CuO nanoparticles. J. Nanopart. Res. 2011, 13, 2497–2507. [Google Scholar] [CrossRef]
- Dumas, J.M.; Geron, C.; Kribii, A.; Barbier, J. Preparation of supported copper catalysts. II. Reduction of copper/alumina catalyst. Appl. Catal. 1989, 47, L9–L15. [Google Scholar] [CrossRef]
- Dow, W.-P.; Wang, Y.-P.; Huang, T.-J. Yttria-Stabilized Zirconia supported copper oxide catalyst. I. Effect of oxygen vacancy of support on copper oxide reduction. J. Catal. 1996, 160, 155–170. [Google Scholar] [CrossRef]
- Dow, W.-P.; Wang, Y.-P.; Huang, T.-J. TPR and XRD studies of yttria-doped ceria/g-alumina-supported copper oxide catalyst. Appl. Catal. A 2000, 190, 25–34. [Google Scholar] [CrossRef]
- Van Der Grift, C.J.G.; Mulder, A.; Geus, J.W. Characterizatuion of silica-supported copper catalysts by means of temperature-programmed reduction. Appl. Catal. 1990, 60, 181–192. [Google Scholar] [CrossRef]
- Praliaud, H.; Mikhailenko, S.; Chajar, Z.; Primet, M. Surface and bulk properties of Cu-ZSM-5 and Cu/Al2O3 solid during redox treatment. Correlation with the selective reduction of nitric oxide by hydrocarbons. Appl. Catal. B 1998, 16, 359–374. [Google Scholar] [CrossRef]
- Sarkany, J.; d’Itri, J.L.; Sachtler, W.M.H. Redox chemistry in excessively ion-exchanged Cu/Na-ZSM-5. Catal. Lett. 1992, 16, 241–249. [Google Scholar] [CrossRef]
- Yashnik, S.A.; Ismagilov, Z.R. Zeolite ZSM-5 Containing Copper Ions: The Effect of the Copper Salt Anion and NH4OH/Cu2+ Ratio on the State of the Copper Ions and on the Reactivity of the Zeolite in DeNOx. Kin. Catal. 2016, 57, 776–796. [Google Scholar] [CrossRef]
Sample | Method of Cu Introduction | Chemical Composition, wt.% | |||||
---|---|---|---|---|---|---|---|
Cu | Na | Fe | Al | Si | |||
1. | 0.5%Cu-MFI-SST | SST | 0.49 | 2.94 | 0.08 | 0.19 | 44.8 |
2. | 1.0%Cu-MFI-SST | SST | 1.18 | 2.73 | 0.13 | 0.21 | 45.1 |
3. | 2.0%Cu-MFI-SST | SST | 2.72 | 1.92 | 0.07 | 0.14 | 43.7 |
4. | 16.0%Cu-MFI-SST | SST | 16.1 | 0.14 | 0.06 | 0.14 | 37.3 |
5. | 1.0%Cu-MFI-IEX | IEX | 0.95 | 0.05 | 0.07 | 0.30 | 43.4 |
6. | 2.0%Cu-MFI-IEX | IEX | 2.03 | 0.06 | 0.09 | 0.27 | 42.7 |
7. | 0.5%Cu-ZSM-5-IEX | IEX | 0.47 | 0.06 | 0.65 | 1.43 | 42.9 |
8. | 1.0%Cu-ZSM-5-IEX | IEX | 1.05 | 0.05 | 0.65 | 1.40 | 42.9 |
9. | 2.0%Cu-ZSM-5-IEX | IEX | 1.97 | 0.05 | 0.65 | 1.41 | 42.9 |
10. | 2.0%Cu-ZSM-5-IMP | IMP | 2.01 | 0.06 | 0.65 | 1.43 | 42.8 |
11. | 16.0%Cu-ZSM-5-IMP | IMP | 16.0 | 0.05 | 0.65 | 1.43 | 42.8 |
N | Sample | Fragmentary Chemical Composition of Dissolved Species and Phases | Phase Contents, wt.% | Hypothesized Structural Compound |
---|---|---|---|---|
1 | 0.5%Cu-MFI-SST | Cu(II), soluble in H2O | <0.05 (3% Cu) | CuO on external surface of silicalite |
Cu(II), soluble in 1.2 M HCl, part of them dissolved with SiO2 | 2 (67% Cu) | CuO with strong interaction with external surface of silicalite | ||
Al0.001Si1 containing Cu(II) with Cu0.0015Si1 and Cu0.30Al1, it is soluble in 3.6 M HF | 98 (30% Cu) | Cu2+ ions, in cation-exchange sites of MFI, bulk of Al-silicalite | ||
2 | 2.0%Cu-MFI-SST | Cu(II), soluble in H2O | 0.14 (7% Cu) | CuO on external surface of silicalite |
Cu(II), soluble in 1.2 M HCl, part of them dissolved with Si-matrix | 1.8 (91% Cu) | CuO with strong interaction with external surface of silicalite | ||
Al0.0008Si1 containing Cu(II) with Cu0.0001Si1 and Cu0.01Al1, it is total soluble in 3.6 M HF | 97 (2% Cu) | Cu2+ ions, in cation-exchange sites of MFI, bulk of Al-silicalite | ||
Al soluble in 3.6 M HF | 0.2 | (AlO)x-like, extralattice Al3+ ions | ||
3 | 16%Cu-MFI-SST | Cu(II), soluble in H2O | 0.8 (5.4% Cu) | CuO on external surface of silicalite |
Cu(II), soluble in 1.2 M HCl, part of them dissolved with SiO2 | 14.9 (93% Cu) | CuO with strong interaction with external surface of silicalite | ||
Al0.001Si1 containing Cu(II) with Cu0.0001Si1 and Cu0.013Al1, it is total soluble in 3.6 M HF | 84 (2.7% Cu) | Cu2+ ions, in cation-exchange sites of MFI, bulk of Al-silicalite | ||
4 | 2.0%Cu-MFI-IEX | Cu(II), soluble in H2O | 1.3 (65% Cu) | CuO on external zeolite surface |
SiO2 containing Cu(II), both are soluble in 1.2 M HCl | 9.0 (33% Cu) | CuO (decorated by SiO2) in near-surface layers of zeolite crystal | ||
Al0.003Si1 containing Cu(II) with Cu0.04Al1, both are soluble in 3.6 M HF | 91 (2% Cu) | Cu2+ ions, in cation-exchange sites, bulk of silicalite | ||
Al soluble in 3.6 M HF | 0.2 | (AlO)x-like, extralattice Al3+ ions | ||
5 | 2.0%Cu-ZSM-5-IEX | Cu(II), soluble in 1.2 M HCl | 0.5 (2.7% Cu) | CuO-like clusters |
Al0.008Fe0.003Si1 containing Cu(II) with Cu0.0004Si1, both are soluble in 3.6 M HF | 98 (97.3%Cu) | Cu2+ ions, in cation-exchange sites, bulk of zeolite | ||
Al3+, soluble in 1.2 M HCl and 3.6 M HF | 0.1% | (AlO)x-like, extralattice Al3+ ions |
Sample | Ab. Band in UV-Vis DR, cm−1 | EPR Parameters at −196 °C | |||||||
---|---|---|---|---|---|---|---|---|---|
d-d Cu2+isol | CTB L → M | g|| | A‖ | G⊥ | Spin/g | %Cu a | |||
1. | 0.5%Cu-MFI-SST | Cu2+, D4h | 14,100 b | 32,000 c | 2.38 | 138 | 2.08 | 3.8 × 1019 | 80 |
2. | 1.0%Cu-MFI-SST | Cu2+, D4h | 14,100 b | 32,000 c | 2.38 | 138 | 2.08 | 8.4 × 1019 | 90 |
3. | 2.0%Cu-MFI-SST | Cu2+, D4h CuO-like | - 16,500 b | 32,000 c 22,100 d | 2.38 | 138 | 2.08 | 5.6 × 1019 | 30 |
4. | 16.0%Cu-MFI-SST | Cu2+, D4h CuO-like | - 16,500 b | 32,000 c 22,100 d | 2.38 2.42 | 138 114 | 2.08 | 1.4 × 1019 | 1 |
5. | 1.0%Cu-MFI-IEX | Cu2+, Oh | 12,800 | 32,000 c 45,000 | 2.38 | 134 | 2.08 | 5.7 × 1019 | 45 |
6. | 2.0%Cu-MFI-IEX | Cu2+, Oh | 13,000 | 32,000 c 45,000 | 2.38 | 134 | 2.08 | 3.1 × 1019 | 25 |
7. | 0.5%Cu-ZSM-5-IEX | Cu2+, Oh | 12,000 | 47,500 | 2.38 | 135 | 2.07 | 6.0 × 1019 | 95 |
8. | 1.0%Cu-ZSM-5-IEX | Cu2+, Oh | 12,000 | 47,500 | 2.38 | 135 | 2.07 | 1.2 × 1020 | 95 |
9. | 2.0%Cu-ZSM-5-IEX | Cu2+, Oh | 12,700 | 47,500 | 2.38 | 135 | 2.07 | 9.6 × 1020 | 80 |
10. | 2.0%Cu-ZSM-5-IMP | Cu2+, Oh | 12,500 | - | 2.38 | 138 | 2.08 | 1.4 × 1020 | 70 |
11. | 16.0%Cu-ZSM-5-IMP | Cu2+, Oh | 13,300 | - | 2.38 | 138 | 2.08 | 1.3 × 1020 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yashnik, S.A.; Surovtsova, T.A.; Salnikov, A.V.; Parmon, V.N. Leaching Stability and Redox Activity of Copper-MFI Zeolites Prepared by Solid-State Transformations: Comparison with Ion-Exchanged and Impregnated Samples. Materials 2023, 16, 671. https://doi.org/10.3390/ma16020671
Yashnik SA, Surovtsova TA, Salnikov AV, Parmon VN. Leaching Stability and Redox Activity of Copper-MFI Zeolites Prepared by Solid-State Transformations: Comparison with Ion-Exchanged and Impregnated Samples. Materials. 2023; 16(2):671. https://doi.org/10.3390/ma16020671
Chicago/Turabian StyleYashnik, Svetlana A., Tatjana A. Surovtsova, Anton V. Salnikov, and Valentin N. Parmon. 2023. "Leaching Stability and Redox Activity of Copper-MFI Zeolites Prepared by Solid-State Transformations: Comparison with Ion-Exchanged and Impregnated Samples" Materials 16, no. 2: 671. https://doi.org/10.3390/ma16020671
APA StyleYashnik, S. A., Surovtsova, T. A., Salnikov, A. V., & Parmon, V. N. (2023). Leaching Stability and Redox Activity of Copper-MFI Zeolites Prepared by Solid-State Transformations: Comparison with Ion-Exchanged and Impregnated Samples. Materials, 16(2), 671. https://doi.org/10.3390/ma16020671