Experimental and Theoretical Tests on the Corrosion Protection of Mild Steel in Hydrochloric Acid Environment by the Use of Pyrazole Derivative
Abstract
:1. Introduction
2. Materials and Methods
2.1. MS Sample and Test Electrolyte
2.2. Inhibitor Elaboration
2.3. Weight Loss (WL)
2.4. Electrochemical Measurements
2.5. Computational Theoretical Studies
2.5.1. Computational Method (DFT Techniques)
2.5.2. Monte Carlo/SAA Simulation
2.6. SEM Inspection
3. Results and Discussion
3.1. Weight Loss Measurements (WL)
3.2. OCP Measurements
3.3. Tafel Plots
3.4. EIS Methods
3.5. Temperature Effect
3.6. Adsorption Consideration
3.7. Metal Surface Inspection
3.8. Molecular Structural Reactivity Examination
3.8.1. Behavior of the Chemical Reactivity of Neutral and Protonated Forms—Global Reactivity
3.8.2. Local Indices (Fukui Indices)
3.8.3. Monte Carlo Simulations (MCT)
4. Conclusions
- -
- The achieved WL loss results obtained showed that PPD greatly inhibited corrosion of MS in an aggressive acid environment.
- -
- Polarization studies revealed that PPD acted as mixed-type inhibitor. EIS measurements suggested that the PPD inhibits corrosion by adsorbing at the interface and η% tended to increase with increasing the inhibitor concentrations, reaching its maximum value of 94% at 10−3 M.
- -
- PPD was proven to be an effective corrosion inhibitor and obeyed the Langmuir adsorption isotherm.
- -
- Scanning electron microscopy (SEM) confirmed the presence of a protective layer formed on the MS surface, limiting the access of the aggressive solution to the metal surface.
- -
- DFT parameters showed good agreement with the experimental results. MD simulation methods have shown that PPD adsorb to the metal surface in a flat or tilted adsorption pattern, which is consistent with the literature.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yimyai, T.; Thiramanas, R.; Phakkeeree, T.; Iamsaard, S.; Crespy, D. Adaptive Coatings with Anticorrosion and Antibiofouling Properties. Adv. Funct. Mater. 2021, 31, 2102568. [Google Scholar] [CrossRef]
- Boudalia, M.; Guenbour, A.; Bellaouchou, A.; Fernandez-Domeneand, R.M.; Garcia-Anton, J. Corrosion behaviour of a highly alloyed austenitic alloy UB6 in contaminated phosphoric acid. Int. J. Corros. 2013, 2013, 363826. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.H.; Hou, B.S.; Li, Y.Y.; Zhu, G.Y.; Lei, Y.; Wang, X.; Liu, H.F.; Zhang, G.A. Dextran 665 derivatives as highly efficient green corrosion inhibitors for carbon steel in CO2-saturated 666 oilfield produced water: Experimental and theoretical ap-proaches. Chem. Eng. J. 2021, 424, 130519. [Google Scholar] [CrossRef]
- Boudalia, M.; Fernández-Domene, R.M.; Tabyaoui, M.; Bellaouchou, A.; Guenbour, A.; García-Antón, J. Green approach to corrosion inhibition of stainless steel in phosphoric acid of Artemesia herba albamedium using plant extract. J. Mater. Res. Technol. 2019, 8, 5763–5773. [Google Scholar] [CrossRef]
- Ma, I.A.W.; Ammar, S.; Kumar, S.S.A.; Ramesh, K.; Ramesh, S. A concise review on 695 corrosion inhibitors: Types, mechanisms and electrochemical evaluation studies. J. Coat. Technol. Res. 2022, 19, 241–268. [Google Scholar] [CrossRef]
- Boudalia, M.; Guenbour, A.; Bellaouchou, A.; Laqhaili, A.; Mousaddak, M.; Hakiki, A. Corrosion Inhibition of Organic Oil Extract of Leaves of Lanvandula Stoekas on Stainless Steel in Concentrated Phosphoric Acid Solution. Int. J. Electrochem. Sci. 2013, 8, 7414–7424. [Google Scholar]
- Huang, H.; Fu, Y.; Li, F.; Wang, Z.; Zhang, S.; Wang, X.; Wang, Z.; Li, H.; Gao, F. Orderly 702 self-assembly of new ionic copolymers for efficiently protecting copper in aggressive sulfuric acid solution. Chem. Eng. J. 2020, 384, 123293. [Google Scholar] [CrossRef]
- Boudalia, M.; El Bakri, Y.; Echihi, S.; Harmaoui, A.; Sebhaoui, J.; Bellaouchou, A.; Guenbour, A.; Tabyaoui, M.; Ramli, Y.; Essassi, E.M. Electrochemical methods for monitoring the performance of a novel Triazole derivative as a corrosion inhibitor in the acidic medium. J. Mater. Environ. Sci. 2017, 8, 2094–2104. Available online: https://www.researchgate.net/publication/315799056 (accessed on 30 December 2022).
- Jeyaram, R.; Elango, A.; Siva, T.; Ayeshamariam, A.; Kaviyarasu, K. Corrosion protection of silane based coatings on mild steel in an aggressive chloride ion environment. Surf. Interfaces 2020, 18, 100423. [Google Scholar] [CrossRef]
- Loto, C.A.; Loto, R.T.; Popoola, P.A. Evaluation of cathodic protection of mild steel with magnesium anodes in 0.5 M HCL. Chem. Data Collect. 2019, 22, 100246. [Google Scholar] [CrossRef]
- Majjane, A.; Rair, D.; Chahine, A.; Et-tabirou, M.; Touhami, M.E.; Touir, R. Preparation and characterization of a new glass system inhibitor for mild steel corrosion in hydrochloric solution. Corros. Sci. 2012, 60, 98–103. [Google Scholar] [CrossRef]
- Laourayed, M.; El Moudane, M.; Khachani, M.; Boudalia, M.; Guenbour, A.; Bellaouchou, A.; Zarrouk, A. Thermal, structural and corrosion inhibition performances of a new phosphate glasses on mild steel in HCl medium. Chem. Data Collect. 2019, 24, 100305. [Google Scholar] [CrossRef]
- Atta, A.; El-Mahdy, G.; Allohedan, H.; El-Saeed, S. Application of nonionic surfactants based on rosin as corrosion inhibitor for tubing steel during acidization of petroleum oil and gas wells. Int. J. Electrochem. Sci. 2015, 10, 8–21. Available online: https://www.researchgate.net/publication/268250451 (accessed on 30 December 2022).
- Xu, Y.; Zhang, S.; Li, W.; Guo, L.; Xu, S.; Feng, L.; Madkour, L. Experimental and theoretical investigations of some pyrazolo-pyrimidine derivatives as corrosion inhibitors on copper in sulfuric acid solution. App. Surf. Sci. 2018, 459, 612–620. [Google Scholar] [CrossRef]
- Li, W.; Tan, B.; Zhang, S.; Guo, L.; Ji, J.; Yan, M.; Wang, R. Insights into triazole derivatives as potential corrosion inhibitors in CMP process: Experimental evaluation and theoretical analysis. Appl. Surf. Sci. 2022, 602, 154165. [Google Scholar] [CrossRef]
- El Ouasif, L.; Laourayed, M.; Benhiba, F.; Boudalia, M.; El Ghoul, M.; Achour, R.; Bellaouchou, A.; Guenbour, A.; Warad, I. Experimental and Theoretical Approaches for Interfacial Adsorption of Novel Long Chain Benzimidazolium Derivatives for Mild Steel Protection in 1 M HCl Medium. Anal. Bioanal. Electrochem. 2021, 13, 12–32. Available online: www.researchgate.net/publication/354582558 (accessed on 30 December 2022).
- Zhang, G.A.; Hou, X.M.; Hou, B.S.; Liu, H.F. Benzimidazole derivatives as novel inhibitors for the corrosion of mild steel in acidic solution: Experimental and theoretical studies. J. Mol. Liq. 2019, 278, 413–427. [Google Scholar] [CrossRef]
- Dwivedi, J.; Sharma, S.; Singh, A. The Synthetic and Biological Attributes of Pyrazole Derivatives: A Review. Mini Rev. Med. Chem. 2018, 18, 918–947. [Google Scholar] [CrossRef]
- Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-aizari, F.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018, 23, 134. [Google Scholar] [CrossRef] [Green Version]
- Echihi, S.; Benzbiria, N.; Belghiti, M.E.; El Fal, M.; Boudalia, M.; Essassi, E.M.; Guenbour, A.; Bellaouchou, A.; Tabyaoui, M.; Azzi, M. Corrosion inhibition of copper by pyrazole pyrimidine derivative in synthetic seawater: Experimental and theoretical studies. Mater. Today Proc. 2020, 37, 3958–3966. [Google Scholar] [CrossRef]
- El-Katori, E.E.; El-Saeed, R.A.; Abdou, M.M. Anti-corrosion and anti-microbial evaluation of novel water-soluble bis azo pyrazole derivative for carbon steel pipelines in petroleum industries by experimental and theoretical studies. Arab. J. Chem. 2022, 15, 104373. [Google Scholar] [CrossRef]
- Verma, C.; Saji, V.S.; Quraishi, M.A.; Ebenso, E.E. Pyrazole derivatives as environmental benign acid corrosion inhibitors for mild steel: Experimental and computational studies. J. Mol. Liq. 2020, 298, 111943. [Google Scholar] [CrossRef]
- Jasmin, A.S.; Rashid, K.H.; AL-Azawi, K.F.; Khadom, A.A. Synthesis of a novel pyrazole heterocyclic derivative as corrosion inhibitor for low-carbon steel in 1M HCl: Characterization, gravimetrical, electrochemical, mathematical, and quantum chemical investigations. Res. Eng. 2022, 15, 100573. [Google Scholar] [CrossRef]
- Sehmi, A.; Ouici, H.B.; Guendouzi, A.; Ferhat, M.; Benali, O.; Boudjellal, F. Corrosion inhibition of mild steel by newly synthesized pyrazole carboxamide derivatives in HCl acid medium: Experimental and theoretical studies. J. Electrochem. Soc. 2020, 167, 155508. [Google Scholar] [CrossRef]
- Yadav, M.; Sinha, R.R.; Sarkar, T.K.; Tiwari, N. Corrosion inhibition effect of pyrazole derivatives on mild steel in hydrochloric acid solution. J. Adhes. Sci. Technol. 2015, 29, 1690–1713. [Google Scholar] [CrossRef]
- Chandak, H.S.; Lad, N.P.; Dange, D.S. Greener and facile aqueous synthesis of pyrazoles using Amberlyst-70 as a recyclable catalyst. Green Chem. Lett. Rev. 2012, 5, 135–138. [Google Scholar] [CrossRef] [Green Version]
- El Boutaybi, M.; Taleb, A.; Touzani, R. Importance of pyrazole carboxylic acid in MOFs preparation. Arab. J. Chem. Environ. Res. 2020, 6, 94–103. Available online: https://www.researchgate.net/publication/343416341 (accessed on 30 December 2022).
- Boudalia, M.; Bellaouchou, A.; Guenbour, A.; Bourazmi, H.; Tabyaoui, E.M.E.M.; El Fal, M.; Ramli, Y.; Elmsellem, H. Study of Pyrazolo [3, 4-d] pyrimidine Derivative as Corrosion Inhibitor on 904L stainless Steel in Molar H3 PO4. Moroccan J. Chem. 2014, 2, 97–109. Available online: https://www.researchgate.net/publication/319260529 (accessed on 30 December 2022).
- Quraishi, M.A. 2-Amino-3,5-dicarbonitrile-6-thio-pyridines: New and Effective Corrosion Inhibitors for Mild Steel in 1 M HCl. Indus. Engin. Chem. Res. 2014, 53, 2851–2859. [Google Scholar] [CrossRef]
- Obot, I.B.; Haruna, K.; Saleh, T. Atomistic Simulation: A Unique and Powerful Computational Tool for Corrosion Inhibition Research. Arab. J. Sci. Eng. 2019, 44, 1–32. [Google Scholar] [CrossRef]
- Mehta, K.; Yadav, M.; Obot, I.B. Electrochemical and computational investigation of adsorption and corrosion inhibition behaviour of 2-aminobenzohydrazide derivatives at mild steel surface in 15% HCl. Mater. Chem. Phys. 2022, 290, 126666. [Google Scholar] [CrossRef]
- El Ibrahimi, B.; Bazzi, L.; El Issami, S. The role of pH in corrosion inhibition of tin using the proline amino acid: Theoretical and experimental investigations. RSC Adv. 2020, 10, 29696–29704. [Google Scholar] [CrossRef]
- BIOVIA Materials Studio, Version 8.0; Accelrys Inc.: San Diego, CA, USA, 2014.
- Sun, H. The COMPASS force field: Parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998, 8, 229–246. [Google Scholar] [CrossRef]
- Belghiti, M.E.; Mihit, M.; Mahsoune, A.; Elmelouky, A.; Mghaiouini, R.; Barhoumi, A.; Dafali, A.; Bakasse, M.; El Mhammedi, M.A.; Abdennouri, M. Studies of Inhibition effect ‘ E & Z ’ Configurations of hydrazine Derivatives on Mild Steel Surface in phosphoiric acid. J. Mater. Res. Technol. 2019, 8, 6336–6353. [Google Scholar] [CrossRef]
- Ouici, H.B.; Guendouzi, A.; Benali, O.; Sehmi, A. Experimental and theoretical approach to the corrosion inhibition of mild steel in acid medium by a newly synthesized pyrazole carbothioamide heterocycle. J. Mol. Struct. 2020, 1199, 127051. [Google Scholar] [CrossRef]
- Yadav, D.K.; Quraishi, M.A. Electrochemical investigation of substituted pyranopyrazoles adsorption on mild steel in acid solution. Ind. Eng. Chem. Res. 2012, 51, 8194–8210. [Google Scholar] [CrossRef]
- Benhiba, F.; Hsissou, R.; Benzikri, Z.; Echihi, S.; El-Blilak, J.; Boukhris, S.; Bellaouchou, A.; Guenbour, A.; Oudda, H.; Warad, I.; et al. DFT/electronic scale, MD simulation and evaluation of 6-methyl-2-(p-tolyl)-1,4-dihydroquinoxaline as a potential corrosion inhibition. J. Mol. Liq. 2021, 335, 116539. [Google Scholar] [CrossRef]
- Asegbeloyin, J.N.; Ejikeme, P.M.; Olasunkanmi, L.O.; Adekunle, A.S.; Ebenso, E.E. A novel schiffbase of 3-acetyl-4-hydroxy-6-methyl-(2H)pyran- 2-one and 2,2′-(ethylenedioxy)diethylamine as potential corrosion inhibitor for mild steel in acidic medium. Materials 2015, 8, 2918–2934. [Google Scholar] [CrossRef] [Green Version]
- Chami, R.; Boudalia, M.; Echihi, S.; El Fal, M.; Bellaouchou, A.; Guenbour, A.; Tabyaoui, M.; Essassi, E.M.; Zarrouk, A.; Ramli, Y. Thermodynamic study and electrochemical Investigation of 4-chloro-1H-pyrazolo[3,4-d]pyrimidine as a corrosion Inhibitor for mild steel in hydrochloric acidSolution. J. Mater. Environ. Sci. 2017, 8, 4182–4192. Available online: https://www.researchgate.net/publication/319522868 (accessed on 30 December 2022).
- Anejjar, A.; Salghi, R.; Zarrouk, A. Investigation of inhibition by 6-bromo-3-nitroso-2-phenylimidazol[1,2-a]pyridine of the corrosion of C38 steel in 1 M HCl. Res Chem. Intermed. 2015, 41, 913. [Google Scholar] [CrossRef]
- Olasunkanmi, L.O.; Kabanda, M.M.; Ebenso, E.E. Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium: Electrochemical and quantum chemical studies. Phys. E Low Dimens. Syst. Nanostruct. 2016, 76, 109–126. [Google Scholar] [CrossRef]
- Yadav, M.; Sinha, R.R.; Kumar, S.; Bahadur, I.; Ebenso, E.E. Synthesis and application of new acetohydrazide derivatives as a corrosion inhibition of mild steel in acidic medium: Insight from electrochemical and theoretical studies. J. Mol. Liq. 2015, 208, 322–332. [Google Scholar] [CrossRef]
- Rahimi, A.; Farhadian, A.; Berisha, A.; Shaabani, A.; Varfolomeev, M.A.; Mehmeti, V.; Zhong, X.; Yousefzadeh, S.; Djimasbe, R. Novel sucrose derivative as a thermally stable inhibitor for mild steel corrosion in 15% HCl medium: An experimental and computational study. Chem. Eng. J. 2022, 446, 136938. [Google Scholar] [CrossRef]
- Chaitra, T.K.; Mohana, K.N.S.; Tandon, H.C. Thermodynamic, electrochemical and quantum chemical evaluation of some triazole Schiff bases as mild steel corrosion inhibitors in acid media. J. Mol. Liq. 2015, 211, 1026–1038. [Google Scholar] [CrossRef]
- Boudalia, M.; Laourayed, M.; El Moudane, M.; Sekkat, Z.; Campos, O.S.; Bellaouchou, A.; Guenbour, A.; Garcia, A.J.; Amin, H.M. Phosphate glass doped with niobium and bismuth oxides as an eco-friendly corrosion protection matrix of iron steel in HCl medium: Experimental and theoretical insights. J. Alloys Compd. 2022, 938, 168570. [Google Scholar] [CrossRef]
- Cao, S.; Liu, D.; Ding, H.; Wang, J.; Lu, H.; Gui, J. Task-speci fi c ionic liquids as corrosion inhibitors on carbon steel in 0.5 M HCl solution: An experimental and theoretical study. Corros. Sci. 2019, 153, 301–313. [Google Scholar] [CrossRef]
- Aoun, S.B. On the corrosion inhibition of carbon steel in 1 M HCl with a pyridinium-ionic liquid: Chemical, thermodynamic, kinetic and electrochemical studies. RSC Adv. 2017, 7, 36688–36696. [Google Scholar] [CrossRef]
- Boutouil, A.; Hrimla, M.; Laamari, M.R.; Elazhary, I.; El Ayouchia, H.B.; El Haddad, M.; Anane, H.; Stiriba, S.E. Understanding the Corrosion Inhibition Mechanism of Mild Steel in Hydrochloric Acid by a Triazole Derivative: A Combined Experimental and Theoretical Approach. Prot. Met. Phys. Chem. Surf. 2019, 55, 973–985. [Google Scholar] [CrossRef]
- Gharda, N.; Galai, M.; Saqalli, L.; Habbadi, N.; Ghailane, R.; Souizi, A.; Touhami, M.E. Linseed oil as a novel eco-friendly corrosion inhibitor of carbon steel in 1MHCl. Surf. Rev. Lett. 2019, 26, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gholami, M.; Danaee, I.; Maddahy, M.H.; Rashvandavei, M. Correlated ab Initio and Electroanalytical Study on Inhibition Behavior of 2—Mercaptobenzothiazole and Its Thiole—Thione Tautomerism Effect for the Corrosion of Steel (API 5L X52) in Sulphuric Acid Solution. Am. Chem. Soc. 2013, 52, 14875–14889. [Google Scholar] [CrossRef]
- Khaled, K.F. The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions. Electrochim. Acta 2003, 48, 2493–2503. [Google Scholar] [CrossRef]
- Radovici, O. Proceedings of the Second European Symposium on Corrosion Inhibitors, Ferrara, Italy; U.S. Department of Energy: Ferrara, Italy, 1965; p. 178.
- Popova, A. Temperature effect on mild steel corrosion in acid media in presence of azoles. Corros. Sci. 2007, 49, 2144–2158. [Google Scholar] [CrossRef]
- Sarkar, T.K.; Yadav, M.; Obot, I.B. Mechanistic evaluation of adsorption and corrosion inhibition capabilities of novel indoline compounds for oil well/tubing steel in 15% HCl. Chem. Eng. J. 2022, 431, 133481. [Google Scholar] [CrossRef]
- El-sherbini, E.E.F.; Wahaab, S.M.A.; Deyab, M. Ethoxylated fatty acids as inhibitors for the corrosion of zinc in acid media. Mater. Chem. Phys. 2005, 89, 183–191. [Google Scholar] [CrossRef]
- Laidler, K.J. Reaction Kinetics, 1st ed.; Pergamon Press: New York, NY, USA, 1963; Volume 1. [Google Scholar] [CrossRef]
- Aljourani, J.; Raeissi, K.; Golozar, M.A. Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl solution. Corros. Sci. 2009, 51, 1836–1843. [Google Scholar] [CrossRef]
- Guo, L.; El Bakri, Y.; Yu, R.; Tan, J.; Essassi, E.M. Newly synthesized triazolopyrimidine derivative as an inhibitor for mild steel corrosion in HCl medium: An experimental and in silico study. J. Mater. Res. Technol. 2020, 9, 6568–6578. [Google Scholar] [CrossRef]
- BAteya, G.; El-Anadouli, B.E.; El-Nizamv, F.M. The adsorption of thiourea on mild steel. Corros. Sci. 1984, 24, 509–515. [Google Scholar] [CrossRef]
- Schorr, M.; Yahalom, J. The significance of the energy of activation for the dissolution reaction of metal in acids. Corros. Sci. 1972, 12, 867–868. [Google Scholar] [CrossRef]
- Solmaz, M.E.R.; Kardas, G.; Yazici, B. Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1, 3, 4-thiadiazole on mild steel in hydrochloric acid media. Colloids Surf. A Physicochem. Eng. Asp. 2008, 312, 7–17. [Google Scholar] [CrossRef]
- Umoren, S.A.; Ebenso, E.E. The synergistic effect of polyacrylamide and iodide ions on the corrosion inhibition of mild steel in H2SO4. Mater. Chem. Phys. 2007, 106, 387–393. [Google Scholar] [CrossRef]
- Aslam, R.; Mobin, M.; Shoeb, H.M.; Murmu, M.; Banerjee, P. Proline nitrate ionic liquid as high temperature acid corrosion inhibitor for mild steel: Experimental and molecular-level insights. J. Ind. Eng. Chem. 2021, 100, 333–350. [Google Scholar] [CrossRef]
- Li, X.; Deng, S.; Fu, H.; Li, T. Adsorption and inhibition effect of 6-benzylaminopurine on cold rolled steel in 1.0 M HCl. Electrochim. Acta 2009, 54, 4089–4098. [Google Scholar] [CrossRef]
- Rubel, M.H.K.; Hossain, M.A.; Hossain, M.K.; Hossain, M.; Khatun, A.A.; Rahaman, M.M.; Rahman, M.F.; Hossain, M.M.; Hossain, J. First-principles calculations to investigate structural, elastic, electronic, thermodynamic, and thermoelectric properties of CaPd3B4O12 (B = Ti, V) perovskites. Res. Phys. 2022, 42, 105977. [Google Scholar] [CrossRef]
- SAhlaam, M.; Abdulmutoli, T.N.; Olaoyead, O.; Idris, M.I.; Rashid, M. Concentration dependence of physical properties of low temperature processed ZnO quantum dots thin films on polyethylene terephthalate as potential electron transport material for perovskite solar cell. Cera. Inter. 2022, 48, 31559–31569. [Google Scholar] [CrossRef]
- Rubel, M.H.K.; Mitro, S.K.; Hossain, M.K.; Hossain, K.M.; Rahaman, M.M.; Hossain, J.; Mondal, B.K.; Akter, A.; Rahman, M.; Ahmed, I.; et al. First-principles calculations to investigate physical properties of single-cubic (Ba0.82K0.18)(Bi0.53Pb0.47)O3 novel perovskite superconductor. Mater. Today Comm. 2022, 33, 104302. [Google Scholar] [CrossRef]
- Tayebi, H.; Himmi, B.; Ramli, Y.; Zarrouk, A.; Geunbour, A.; Bellaouchou, A.; Zarrok, H.; Boudalia, M.; El Assyry, A. Experimental and theoretical investigation of 5-(azidomethyl)quinolin-8-ol as a corrosion inhibitor for carbon steel in hydrochloric acid medium. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 1861–1873. Available online: https://www.researchgate.net/publication/282272037 (accessed on 30 December 2022).
- Khaled, K.F. Monte Carlo simulations of corrosion inhibition of mild steel in 0.5 M sulphuric acid by some green corrosion inhibitors. J. Solid State Electrochem. 2009, 13, 1743–1756. [Google Scholar] [CrossRef]
- Klopman, G. Chemical Reactivity and the Concept of Charge- and Frontier-Controlled Reactions. J. Am. Chem. Soc. 1968, 90, 233. [Google Scholar] [CrossRef]
- Jensen, W.B. The Lewis Acid-Base Definitions: A Status Report WILLIAM. Chem. Rev. 1978, 78, 1923–1938. [Google Scholar] [CrossRef]
- Liu, G.; Rodriguez, A.; Dvorak, J.; Hrbek, J.; Jirsak, T. Chemistry of sulfur-containing molecules on Au (111): Thiophene, sulfur dioxide, and methanethiol adsorption. Surf. Sci. 2002, 505, 295–307. [Google Scholar] [CrossRef]
- Holt, A.F.; Facciotti, M.; Amaro, P.; Brown, R.C.D.; Lewin, P.L.; Pilgrim, J.A. An Initial Study Into Silver Corrosion in Transformers Following Oil Reclamation. IEEE Conf. Electr. Insul. (EIC) Dielectr. Phenom. 2013, 2, 469–472. [Google Scholar] [CrossRef]
C (M) | CR (mg cm−2 h−1) | EWL (%) | θ |
---|---|---|---|
Blank | 0.600 | −− | −− |
10−3 | 0.037 | 94 | 0.94 |
10−4 | 0.062 | 90 | 0.90 |
10−5 | 0.142 | 76 | 0.76 |
10−6 | 0.252 | 58 | 0.58 |
Inhibitor | C (M) | Ecorr (mV vs. SCE) | βa (mV dec−1) | −βc (mV dec−1) | icorr (µA cm−2) | θ | EPDP (%) |
---|---|---|---|---|---|---|---|
1 M HCl | Blank | −459 ± 31 | 164 ± 17 | 92 ± 3 | 560 ± 13 | −− | −− |
PPD | 10−3 | −409 ± 49 | 63 ± 2 | 132 ± 14 | 32 ± 6 | 0.94 | 94 |
10−4 | −424 ± 33 | 41 ± 4 | 119 ± 16 | 58 ± 2 | 0.90 | 90 | |
10−5 | −440 ± 16 | 75 ± 10 | 102 ± 19 | 135 ± 6 | 0.76 | 76 | |
10−6 | −442 ± 47 | 71 ± 4 | 122 ± 4 | 191 ± 14 | 0.66 | 66 |
C (M) | Rs (Ω cm2) | Rct (Ω cm2) | Q (µF Sn−1) | Cdl (µF cm−2) | n | EEIS (%) |
---|---|---|---|---|---|---|
Blank | 1.16 | 17 ± 0.06 | 462 ± 2.09 | 138 ± 1.03 | 0.800 ± 0.05 | −− |
10−3 | 1.728 | 319 ± 1.09 | 109.2 ± 0.04 | 46.44 ± 0.09 | 0.796 ± 0.02 | 94 |
10−4 | 0.9008 | 219.7 ± 2.07 | 121.4 ± 1.08 | 48.23 ± 1.05 | 0.797 ± 0.01 | 92 |
10−5 | 0.9987 | 78.4 ± 2.01 | 254 ± 2.02 | 115.9 ± 0.08 | 0.889 ± 0.09 | 78 |
10−6 | 1.176 | 54 ± 3.05 | 286.2 ± 1.08 | 126.1 ± 2.03 | 0.790 ± 0.06 | 68 |
CPPD (M) | Ea (kJ mol−1) | ΔHa (kJ mol−1) | ΔSa (kJ mol−1) | Ea−ΔHa (kJ mol−1) |
---|---|---|---|---|
Blank | 41.73 | 39.09 | −63.71 | 2.64 |
10−3 M PPD | 84.57 | 81.93 | 54.49 | 2.64 |
Compound Tested | r2 | Slope | Kads (105 Μ−1) | ∆ (kJ mol−1) |
---|---|---|---|---|
PPD | 0.9999 | 1.049 | 8.30 | −44.5 |
Inhibitor | ||
---|---|---|
PPD | 9.1308 | 10.6354 |
Complexes | ∆Eadsorption (kcal mol−1) | Denergy (kcal mol−1) |
---|---|---|
Fe (110)−(PPD) | −151.08 | −41.33 |
Fe (111)−(PPD) | −135.68 | −40.08 |
Fe (100)−(PPD) | −135.03 | −39.87 |
Complexes | Bond Distances |
---|---|
Fe (110)−(PPD) | 3.351 Å |
Fe (111)−(PPD) | 3.879 Å |
Fe (100)−(PPD) | 3.479 Å |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boudalia, M.; Fernández-Domene, R.M.; Guo, L.; Echihi, S.; Belghiti, M.E.; Zarrouk, A.; Bellaouchou, A.; Guenbour, A.; García-Antón, J. Experimental and Theoretical Tests on the Corrosion Protection of Mild Steel in Hydrochloric Acid Environment by the Use of Pyrazole Derivative. Materials 2023, 16, 678. https://doi.org/10.3390/ma16020678
Boudalia M, Fernández-Domene RM, Guo L, Echihi S, Belghiti ME, Zarrouk A, Bellaouchou A, Guenbour A, García-Antón J. Experimental and Theoretical Tests on the Corrosion Protection of Mild Steel in Hydrochloric Acid Environment by the Use of Pyrazole Derivative. Materials. 2023; 16(2):678. https://doi.org/10.3390/ma16020678
Chicago/Turabian StyleBoudalia, Maria, R. M. Fernández-Domene, L. Guo, S. Echihi, M. E. Belghiti, A. Zarrouk, A. Bellaouchou, A. Guenbour, and J. García-Antón. 2023. "Experimental and Theoretical Tests on the Corrosion Protection of Mild Steel in Hydrochloric Acid Environment by the Use of Pyrazole Derivative" Materials 16, no. 2: 678. https://doi.org/10.3390/ma16020678
APA StyleBoudalia, M., Fernández-Domene, R. M., Guo, L., Echihi, S., Belghiti, M. E., Zarrouk, A., Bellaouchou, A., Guenbour, A., & García-Antón, J. (2023). Experimental and Theoretical Tests on the Corrosion Protection of Mild Steel in Hydrochloric Acid Environment by the Use of Pyrazole Derivative. Materials, 16(2), 678. https://doi.org/10.3390/ma16020678