Phase Transformation Behaviors of Medium Carbon Steels Produced by Twin Roll Casting and Compact Strip Production Processes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Composition Segregation of the Hot-Rolled Strips
4.2. Surface Decarburization of the Hot-Rolled Strips
4.3. Phase Transformation of the Hot-Rolled Strips
5. Conclusions
- (1)
- The TRC process has great advantages in controlling elements segregation for medium carbon steel strip production. CSP-50# shows distinct band segregation of C and Mn, especially the central segregation, but no composition segregation was observed in TRC-50#-10 and TRC-50#-33 strips;
- (2)
- No apparent decarburization was observed on the surface of 50# steel strip produced by the TRC process, while incomplete decarburization with an average thickness of 13.52 μm was observed on the surface of 50# steel strips produced by the CSP, which is partially attributed to the high soaking temperature and long soaking time of the CSP process;
- (3)
- The band segregation of C and Mn of CSP-50# strip induces band-like pearlite–ferrite structure. The steel strip produced by TRC has a higher pearlite volume fraction, larger PNS and smaller PCS and IS due to the co-influence of larger PAGS and the lower coiling temperature.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, Z.; Huang, Y.; Liu, H.; Wang, S. Hot Tensile and Fracture Behavior of 35CrMo Steel at Elevated Temperature and Strain Rate. Metals 2016, 6, 210. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Yu, H.; Lu, J.; Huang, Z. Temperature Dependence and Formation Mechanism of Surface Decarburization Behavior in 35CrMo Steel. Steel Res. Int. 2019, 90, 1900188. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Tong, Q.; Wang, L. Effects of Temperature and Oxygen Concentration on the Characteristics of Decarburization of 55SiCr Spring Steel. ISIJ Int. 2014, 54, 1920–1926. [Google Scholar] [CrossRef] [Green Version]
- Prawoto, Y.; Ikeda, M.; Manville, S.K.; Nishikawa, A. Design and failure modes of automotive suspension springs. Eng. Failure Anal. 2008, 15, 1155–1174. [Google Scholar] [CrossRef]
- Adamaszek, K.; Brož, P.; Kučera, J. Decarburization and hardness changes in carbon steels caused by high-temperature surface oxidation in ambient air. Defect Diffus. Forum 2001, 194, 1701–1706. [Google Scholar] [CrossRef]
- Guo, F.; Wang, X.; Liu, W.; Shang, C.; Misra, R.; Wang, H.; Zhao, T.; Peng, C. The Influence of Centerline Segregation on the Mechanical Performance and Microstructure of X70 Pipeline Steel. Steel Res. Int. 2018, 89, 1800407. [Google Scholar] [CrossRef]
- Kyada, T.; Shant, J.R.; Goyal, R.K.; Kathayat, T. Understanding the Delamination and Its Effect on Charpy Impact Energy in Thick Wall Linepipe Steel. J. Mater. Metall. Eng 2014, 4, 31–39. [Google Scholar]
- Liu, K.; Cheng, S.; Li, J.; Feng, Y. Effect of Solidifying Structure on Centerline Segregation of S50C Steel Produced by Compact Strip Production. Coatings 2021, 11, 1497. [Google Scholar] [CrossRef]
- Feng, R.; Li, S.; Zhu, X.; Ao, Q. Microstructural characterization and formation mechanism of abnormal segregation band of hot rolled ferrite/pearlite steel. J. Alloys Compd. 2015, 646, 787–793. [Google Scholar] [CrossRef] [Green Version]
- Thompson, S.W.; Howell, P.R. Factors influencing ferrite/pearlite banding and origin of large pearlite nodules in a hypoeutectoid plate steel. Mater. Sci. Technol. 1992, 8, 777–784. [Google Scholar] [CrossRef]
- Krebs, B.; Germain, L.; Hazotte, A.; Gouné, M. Banded structure in Dual Phase steels in relation with the austenite-to-ferrite transformation mechanisms. J. Mater. Sci. 2011, 46, 7026–7038. [Google Scholar] [CrossRef]
- Ji, Y.; Tang, H.; Lan, P.; Shang, C.; Zhang, J. Effect of Dendritic Morphology and Central Segregation of Billet Castings on the Microstructure and Mechanical Property of Hot-Rolled Wire Rods. Steel Res. Int. 2017, 88, 1600426. [Google Scholar] [CrossRef]
- Xue, Z.; Li, Z.; Zhang, J. Centerline Segregation in Continuous Cast High-Carbon Steel Billet. Steelmaking 2000, 16, 56–59+62. [Google Scholar]
- Brimacombe, J.K. The challenge of quality in continuous casting processes. Met. Mater. Trans. A 1999, 30, 1899–1912. [Google Scholar] [CrossRef]
- Xu, S.; Li, S.; Wang, S.; Gao, J.; Cao, R.; Feng, Q.; Li, H.; Mao, X. Research status and prospect of direct strip casting manufactured low-carbon microalloyed steel. J. Iron Steel Res. Int. 2022, 29, 17–33. [Google Scholar] [CrossRef]
- Gildersleeve, M.J. Relationship between decarburisation and fatigue strength of through hardened and carburising steels. Mater. Sci. Technol. 1991, 7, 307–310. [Google Scholar] [CrossRef]
- Carroll, R.I.; Beynon, J.H. Decarburisation and rolling contact fatigue of a rail steel. Wear 2006, 260, 523–537. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Tong, Q.; Sun, Q. Effects of Si and Cr on Complete Decarburization Behavior of High Carbon Steels in Atmosphere of 2 vol. % O2. J. Iron Steel Res. Int. 2016, 23, 1316–1322. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Zhou, L.; Jiang, C. Secondary Hardening, Austenite Grain Coarsening and Surface Decarburization Phenomenon in Nb-Bearing Spring Steel. J. Iron Steel Res. Int. 2012, 19, 47–51. [Google Scholar] [CrossRef]
- Ma, M.; Li, Z.; Lu, X. Effect of vanadium on decarburization sensitivity of spring steel 35SiMnB. Special Steel 2001, 22, 9–11. [Google Scholar]
- Maria das Graças, M.M.; Mantel, M.J. Effect of the temperature and dew point of the decarburization process on the oxide subscale of a 3% silicon steel. J. Magn. Magn. Mater. 2003, 254–255, 337–339. [Google Scholar] [CrossRef]
- Baud, J.; Ferrier, A.; Manenc, J.; Benard, J. The oxidation and decarburizing of Fe-C alloys in air and the influence of relative humidity. Oxid. Met. 1975, 9, 69–97. [Google Scholar] [CrossRef]
- Hao, X.; Yin, W.; Strangwood, M.; Peyton, A.J.; Morris, P.F.; Davis, C.L. Characterization of Decarburization of Steels Using a Multifrequency Electromagnetic Sensor: Experiment and Modeling. Met. Mater. Trans. A 2009, 40, 745–756. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, B.; Zhang, C.; Li, G.; Dai, Y.; Chen, L. Evolution during Hot Rolling and Control by Thermomechanical Control Process of Surface Decarburization on 38Si7 Spring Steel. J. Mater. Eng. Perform. 2022, 31, 8677–8686. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Zhou, L.; Jiang, C.; Xiao, J. Forming condition and control strategy of ferrite decarburization in 60Si2MnA spring steel wires for automotive suspensions. Int. J. Miner. Metall. Mater. 2012, 19, 116–121. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, L.; Liu, Y. Surface decarburization characteristics and relation between decarburized types and heating temperature of spring steel 60Si2MnA. Int. J. Miner. Metall. Mater. 2013, 20, 720–724. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, C.L.; Liu, Y.Z. Ferrite Decarburization of High Silicon Spring Steel in Three Temperature Ranges. Arch. Metall. Mater. 2016, 61, 1715–1722. [Google Scholar] [CrossRef]
- Li, D.; Anghelina, D.; Burzic, D.; Zamberger, J.; Kienreich, R.; Schifferl, H.; Krieger, W.; Kozeschnik, E. Investigation of decarburization in spring steel production process–part I: Experiments. Steel Res. Int. 2009, 80, 298–303. [Google Scholar]
- Bao, S.; Zhao, G.; Guo, J.; Peng, L.; Tang, S. Differences and their causes of medium-high carbon steels produced by two kinds of processes. J. Iron Steel Res. 2016, 28, 38–43. [Google Scholar]
- Mao, X. Near net shape manufacturing technology of hot-rolled strip. Metall. Ind. Press 2020, 11, 60–78. [Google Scholar]
- Lindenberg, H.U.; Brückner, G.; Tacke, K.H. Strip properties and processing in twin roll casting of stainless and low carbon steels. Steel Res. 2001, 72, 490–495. [Google Scholar] [CrossRef]
- Maleki, A.; Taherizadeh, A.; Hosseini, N. Twin Roll Casting of Steels: An Overview. ISIJ Int. 2017, 57, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zapuskalov, N. Comparison of continuous strip casting with conventional technology. ISIJ Int. 2003, 43, 1115–1127. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Zeng, J.; Wang, W. Twin-roll strip casting of advanced metallic materials. Sci. China Technol. Sci. 2021, 65, 493–518. [Google Scholar] [CrossRef]
- Jorge-Badiola, D.; Iza-Mendia, A.; López, B.; JM, R.-I. Role of vanadium microalloying in austenite conditioning and pearlite microstructure in thermomechanically processed eutectoid steels. ISIJ Int. 2009, 49, 1615–1623. [Google Scholar] [CrossRef] [Green Version]
- Bakkaloğlu, A. Effect of processing parameters on the microstructure and properties of an Nb microalloyed steel. Mater. Lett. 2002, 56, 200–209. [Google Scholar] [CrossRef]
- Elwazri, A.; Yue, S.; Wanjara, P. Effect of prior-austenite grain size and transformation temperature on nodule size of microalloyed hypereutectoid steels. Met. Mater. Trans. A 2005, 36, 2297–2305. [Google Scholar] [CrossRef]
- Kavishe, F.P.L.; Baker, T.J. Effect of prior austenite grain size and pearlite interlamellar spacing on strength and fracture toughness of a eutectoid rail steel. Mater. Sci. Technol. 2013, 2, 816–822. [Google Scholar] [CrossRef]
- Barik, R.K.; Ghosh, A.; Basiruddin, S.M.; Biswal, S.; Dutta, A.; Chakrabarti, D. Bridging microstructure and crystallography with the micromechanics of cleavage fracture in a lamellar pearlitic steel. Acta Mater. 2021, 214, 116988. [Google Scholar] [CrossRef]
- Behera, S.; Barik, R.K.; Hasan, S.M.; Mitra, R.; Chakrabarti, D. Tailoring the Processing Route to Optimize the Strength–Toughness Combination of Pearlitic Steel. Met. Mater. Trans. A 2022, 53, 3853–3868. [Google Scholar] [CrossRef]
- Hyzak, J.; Bernstein, I. The role of microstructure on the strength and toughness of fully pearlitic steels. Metall. Trans. A 1976, 7, 1217–1224. [Google Scholar] [CrossRef]
- Ray, K.; Mondal, D. The effect of interlamellar spacing on strength of pearlite in annealed eutectoid and hypoeutectoid plain carbon steels. Acta Metall. Mater. 1991, 39, 2201–2208. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Bhattacharyya, T.; Haldar, A. Influence of microstructure on the mechanical properties of a pearlitic steel. Met. Mater. Trans. A 2020, 51, 3614–3626. [Google Scholar] [CrossRef]
- Xu, P.; Liang, Y.; Li, J.; Meng, C. Further improvement in ductility induced by the refined hierarchical structures of pearlite. Mater. Sci. Eng. A 2019, 745, 176–184. [Google Scholar] [CrossRef]
- Rodrigues, K.F.; Mourão, G.M.M.; Faria, G.L. Kinetics of Isothermal Phase Transformations in Premium and Standard Rail Steels. Steel Res. Int. 2020, 92, 2000306. [Google Scholar] [CrossRef]
- Honjo, M.; Kimura, T.; Hase, K. Effect of Cr on Lamellar Spacing and High-Temperature Stability in Eutectoid Steels. ISIJ Int. 2016, 56, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Khiratkar, V.N.; Mishra, K.; Srinivasulu, P.; Singh, A. Effect of inter-lamellar spacing and test temperature on the Charpy impact energy of extremely fine pearlite. Mater. Sci. Eng. A 2019, 754, 622–627. [Google Scholar] [CrossRef]
- Alexander, D.; Bernstein, I. Cleavage fracture in pearlitic eutectoid steel. Metall. Trans. A 1989, 20, 2321–2335. [Google Scholar] [CrossRef]
- Nakada, N.; Koga, N.; Tsuchiyama, T.; Takaki, S. Crystallographic orientation rotation and internal stress in pearlite colony. Scr. Mater. 2009, 61, 133–136. [Google Scholar] [CrossRef]
- Bramfitt, B.; Marder, A. A transmission-electron-microscopy study of the substructure of high-purity pearlite. Metallography 1973, 6, 483–495. [Google Scholar] [CrossRef]
- Pandit, A.S. Theory of the Pearlite Transformation in Steels. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2011. [Google Scholar]
- Krauss, G. Solidification, segregation, and banding in carbon and alloy steels. Met. Mater. Trans. B 2003, 34, 781–792. [Google Scholar] [CrossRef]
- Meng, Y.; Thomas, B.G. Heat-transfer and solidification model of continuous slab casting: CON1D. Met. Mater. Trans. B 2003, 34, 685–705. [Google Scholar] [CrossRef]
- Clyne, T.W.; Kurz, W. Solute redistribution during solidification with rapid solid state diffusion. Metall. Trans. A 1981, 12, 965–971. [Google Scholar] [CrossRef]
- Cheng, M.; Tang, Z.; Ni, M. Relationship between cooling rate and secondary dendrite arm spacing for steel No. 45. J. Iron Steel Res. 1993, 5, 1–4. [Google Scholar]
- Miyazawa, K.; Schwerdtfeger, K. Macrosegregation in continuously cast steel slabs: Preliminary theoretical investigation on the effect of steady state bulging. Arch. Eisenhüttenwes. 1981, 52, 415–422. [Google Scholar] [CrossRef]
- Großterlinden, R.; Kawalla, R.; Lotter, U.; Pircher, H. Formation of pearlitic banded structures in ferritic-pearlitic steels. Steel Res. 1992, 63, 331–336. [Google Scholar] [CrossRef]
- Aranda, M.M.; Kim, B.; Rementeria, R.; Capdevila, C.; De Andrés, C.G. Effect of Prior Austenite Grain Size on Pearlite Transformation in a Hypoeuctectoid Fe-C-Mn Steel. Met. Mater. Trans. A 2013, 45, 1778–1786. [Google Scholar] [CrossRef] [Green Version]
- Lange, W.; Enomoto, M.; Aaronson, H. Precipitate nucleation kinetics at grain boundaries. Int. Mater. Rev. 1989, 34, 125–152. [Google Scholar] [CrossRef]
- Jorge-Badiola, D.; Iza-Mendia, A.; JM, R.-I.; Lopez, B. Influence of thermomechanical processing on the austenite–pearlite transformation in high carbon vanadium microalloyed steels. ISIJ Int. 2010, 50, 546–555. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.; Barik, R.K.; Sk, M.B.; Mitra, R.; Chakrabarti, D. Recipe for improving the impact toughness of high-strength pearlitic steel by controlling the cleavage cracking mechanisms. Mater. Sci. Eng. A 2019, 764, 138256. [Google Scholar] [CrossRef]
- Zener, C. Kinetics of the decomposition of austenite. Trans. AIME 1946, 167, 550–595. [Google Scholar]
Process | CSP | TRC |
---|---|---|
Production line length/m | 180–400 | ~50 |
Casting speed/(m/min) | 3.5–7.0 | 60–120 |
Casting slab thickness/mm | 50–130 | 1.4–2.1 |
Cooling rate/(°C/s) | 101–102 | 102–103 |
Rolling pass | ≥5 | 1 |
Sample Code | C | Si | Mn | P | S |
---|---|---|---|---|---|
CSP-50# | 0.51 | 0.27 | 0.63 | ≤0.012 | ≤0.003 |
TRC-50#-10 | 0.49 | 0.22 | 0.63 | <0.02 | <0.003 |
TRC-50#-33 |
Sample Code | Total Rolling Reduction | Coiling Temperature |
---|---|---|
CSP-50# | 98% | 700 °C |
TRC-50#-10 | 10% | 620 °C |
TRC-50#-33 | 33% | 620 °C |
Sample | VFPF/% | PAGS/μm | PNS/μm | PCS/μm | IS/nm |
---|---|---|---|---|---|
CSP-50# | 18 | 24 | 7.7 1 | 8.9 ± 4 | 350 ± 134 |
TRC-50#-10 | 0.8 | 164 | 11.6 | 3.8 ± 2 | 98 ± 20 |
TRC-50#-33 | 2 | 70 | 8.6 | 2.9 ± 1 | 90 ± 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Feng, H.; Wang, S.; Gao, J.; Zhao, H.; Wu, H.; Xu, S.; Feng, Q.; Li, H.; Liu, X.; et al. Phase Transformation Behaviors of Medium Carbon Steels Produced by Twin Roll Casting and Compact Strip Production Processes. Materials 2023, 16, 1980. https://doi.org/10.3390/ma16051980
Li S, Feng H, Wang S, Gao J, Zhao H, Wu H, Xu S, Feng Q, Li H, Liu X, et al. Phase Transformation Behaviors of Medium Carbon Steels Produced by Twin Roll Casting and Compact Strip Production Processes. Materials. 2023; 16(5):1980. https://doi.org/10.3390/ma16051980
Chicago/Turabian StyleLi, Shaohua, Haibo Feng, Shuize Wang, Junheng Gao, Haitao Zhao, Honghui Wu, Shuai Xu, Qingxiao Feng, Hualong Li, Xinyuan Liu, and et al. 2023. "Phase Transformation Behaviors of Medium Carbon Steels Produced by Twin Roll Casting and Compact Strip Production Processes" Materials 16, no. 5: 1980. https://doi.org/10.3390/ma16051980
APA StyleLi, S., Feng, H., Wang, S., Gao, J., Zhao, H., Wu, H., Xu, S., Feng, Q., Li, H., Liu, X., & Wu, G. (2023). Phase Transformation Behaviors of Medium Carbon Steels Produced by Twin Roll Casting and Compact Strip Production Processes. Materials, 16(5), 1980. https://doi.org/10.3390/ma16051980