Short-Term Memory Characteristics of IGZO-Based Three-Terminal Devices
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sagiroglu, S.; Sinanc, D. Big Data: A Review. In Proceedings of the 2013 International Conference on CTS, San Diego, CA, USA, 20–24 May 2013; pp. 42–47. [Google Scholar] [CrossRef]
- Schaller, R.R. Moore’s law: Past, present and future. IEEE Spectr. 1997, 34, 52–59. [Google Scholar] [CrossRef]
- Wang, Z.R.; Su, Y.T.; Li, Y.; Zhou, Y.X.; Chu, T.J.; Chang, K.C.; Chang, T.C.; Tsai, T.M.; Sze, S.M.; Miao, X.S. Functionally Complete Boolean Logic in 1T1R Resistive Random Access Memory. IEEE Electron. Device Lett. 2017, 38, 179–182. [Google Scholar] [CrossRef]
- Paterson, A.F.; Anthopoulos, T.D. Enabling Thin-Film Transistor Technologies and the Device Metrics That Matter. Nat. Commun. 2018, 9, 5264. [Google Scholar] [CrossRef]
- Keyes, R.W. Physical Limits of Silicon Transistors and Circuits. Rep. Prog. Phys. 2005, 68, 2701–2746. [Google Scholar] [CrossRef]
- Pop, E.; Sinha, S.; Goodson, K.E. Heat Generation and Transport in Nanometer-Scale Transistors. Proc. IEEE 2006, 94, 1587–1601. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Hwang, S.; Kim, M.H.; Chang, Y.F.; Park, B.G. Analog Synaptic Behavior of a Silicon Nitride Memristor. ACS Appl. Mater. Interfaces 2017, 9, 40420–40427. [Google Scholar] [CrossRef]
- Eigenmann, R.; Lilja, D.J. Von Neumann Computers. Wiley Encycl. Electr. Electron. Eng. 1999, 1, 387–400. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Chen, Y.C.; Kim, M.H.; Kim, H.; Kwon, M.W.; Hwang, S.; Ismail, M.; Li, Y.; Miao, X.S.; et al. Neuronal Dynamics in HfOx/AlOy-Based Homeothermic Synaptic Memristors with Low-Power and Homogeneous Resistive Switching. Nanoscale 2019, 11, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Talati, N.; Ben-Hur, R.; Wald, N.; Haj-Ali, A.; Reuben, J.; Kvatinsky, S. MMPU—A Real Processing-in-Memory Architecture to Combat the von Neumann Bottleneck. Springer Ser. Adv. Microelectron. 2020, 63, 191–213. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, T.; Ye, X.; Geng, D.; Chen, W.; Hu, W. Organic Field Effect Transistor-Based Photonic Synapses: Materials, Devices, and Applications. Adv. Funct. Mater. 2021, 31, 2106151. [Google Scholar] [CrossRef]
- Indiveri, G.; Liu, S.C. Memory and Information Processing in Neuromorphic Systems. Proc. IEEE 2015, 103, 1379–1397. [Google Scholar] [CrossRef]
- Park, S.; Kim, H.; Choo, M.; Noh, J.; Sheri, A.; Jung, S.; Seo, K.; Park, J.; Kim, S.; Lee, W.; et al. RRAM-Based Synapse for Neuromorphic System with Pattern Recognition Function. In Proceedings of the Technical Digest-IEDM, San Francisco, CA, USA, 10–13 December 2012. [Google Scholar] [CrossRef]
- Upadhyay, N.K.; Jiang, H.; Wang, Z.; Asapu, S.; Xia, Q.; Joshua Yang, J. Emerging Memory Devices for Neuromorphic Computing. Adv. Mater. Technol. 2019, 4, 1800589. [Google Scholar] [CrossRef]
- Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Lett. 2010, 10, 1297–1301. [Google Scholar] [CrossRef]
- Hua, Q.; Wu, H.; Gao, B.; Zhang, Q.; Wu, W.; Li, Y.; Wang, X.; Hu, W.; Qian, H. Low-Voltage Oscillatory Neurons for Memristor-Based Neuromorphic Systems. Glob. Chall. 2019, 3, 1900015. [Google Scholar] [CrossRef]
- Schuman, C.D.; Kulkarni, S.R.; Parsa, M.; Mitchell, J.P.; Date, P.; Kay, B. Opportunities for Neuromorphic Computing Algorithms and Applications. Nat. Comput. Sci. 2022, 2, 10–19. [Google Scholar] [CrossRef]
- Akopyan, F.; Sawada, J.; Cassidy, A.; Alvarez-Icaza, R.; Arthur, J.; Merolla, P.; Imam, N.; Nakamura, Y.; Datta, P.; Nam, G.J.; et al. TrueNorth: Design and Tool Flow of a 65 MW 1 Million Neuron Programmable Neurosynaptic Chip. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2015, 34, 1537–1557. [Google Scholar] [CrossRef]
- Goi, E.; Zhang, Q.; Chen, X.; Luan, H.; Gu, M. Perspective on Photonic Memristive Neuromorphic Computing. PhotoniX 2020, 1, 1–26. [Google Scholar] [CrossRef]
- Göltz, J.; Kriener, L.; Baumbach, A.; Billaudelle, S.; Breitwieser, O.; Cramer, B.; Dold, D.; Kungl, A.F.; Senn, W.; Schemmel, J.; et al. Fast and Energy-Efficient Neuromorphic Deep Learning with First-Spike Times. Nat. Mach. Intell. 2021, 3, 823–835. [Google Scholar] [CrossRef]
- Yu, S. Neuro-Inspired Computing with Emerging Nonvoltatile Memory. Proc. IEEE 2018, 106, 260–285. [Google Scholar] [CrossRef]
- Park, Y.; Kim, M.K.; Lee, J.S. Emerging Memory Devices for Artificial Synapses. J. Mater. Chem. C Mater. 2020, 8, 9163–9183. [Google Scholar] [CrossRef]
- Serb, A.; Bill, J.; Khiat, A.; Berdan, R.; Legenstein, R.; Prodromakis, T. Unsupervised Learning in Probabilistic Neural Networks with Multi-State Metal-Oxide Memristive Synapses. Nat. Commun. 2016, 7, 12611. [Google Scholar] [CrossRef] [PubMed]
- Bedeschi, F.; Fackenthal, R.; Resta, C.; Donze, E.M.; Jagasivamani, M.; Buda, E.; Pellizzer, F.; Chow, D.; Cabrini, A.; Calvi, G.M.A.; et al. A Multi-Level-Cell Bipolar-Selected Phase-Change Memory. IEEE Int. Solid-State Circuits Conf. 2008, 51, 428–625. [Google Scholar] [CrossRef]
- Ishiwara, H. Ferroelectric Random Access Memories. J. Nanosci. Nanotechnol. 2012, 12, 7619–7627. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, B.G. Nonlinear and Multilevel Resistive Switching Memory in Ni/Si3N4/Al2O3/TiN Structures. Appl. Phys. Lett. 2016, 108, 212103. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Zhang, D.; Baskin, M.; Chen, A.; Kvatinsky, S.; Yalon, E.; Kornblum, L. Scalable Al 2 O 3 –TiO 2 Conductive Oxide Interfaces as Defect Reservoirs for Resistive Switching Devices. Adv. Electron. Mater. 2022, 3, 2200800. [Google Scholar] [CrossRef]
- Xu, T.C.; Leppänen, V. Analysing Emerging Memory Technologies for Big Data and Signal Processing Applications. In Proceedings of the 2015 Fifth International Conference on Digital Information Processing and Communications (ICDIPC), Sierre, Switzerland, 7–9 October 2015; pp. 104–109. [Google Scholar] [CrossRef]
- Kim, S.; Chang, Y.F.; Park, B.G. Understanding Rectifying and Nonlinear Bipolar Resistive Switching Characteristics in Ni/SiNx/p-Si Memory Devices. RSC Adv. 2017, 7, 17882–17888. [Google Scholar] [CrossRef]
- Do Yang, B.; Lee, J.E.; Kim, J.S.; Cho, J.; Lee, S.Y.; Yu, B.G. A Low Power Phase-Change Random Access Memory Using a Data-Comparison Write Scheme. In Proceedings of the IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 27–30 May 2007; pp. 3014–3017. [Google Scholar] [CrossRef]
- Muller, J.; Boscke, T.S.; Muller, S.; Yurchuk, E.; Polakowski, P.; Paul, J.; Martin, D.; Schenk, T.; Khullar, K.; Kersch, A.; et al. Ferroelectric Hafnium Oxide: A CMOS-Compatible and Highly Scalable Approach to Future Ferroelectric Memories. In Proceedings of the IEEE IEDM IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013. [Google Scholar] [CrossRef]
- Covi, E.; Donati, E.; Liang, X.; Kappel, D.; Heidari, H.; Payvand, M.; Wang, W. Adaptive Extreme Edge Computing for Wearable Devices. Front. Neurosci. 2021, 15, 101809. [Google Scholar] [CrossRef]
- Zahoor, F.; Azni Zulkifli, T.Z.; Khanday, F.A. Resistive Random Access Memory (RRAM): An Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (Mlc) Storage, Modeling, and Applications. Nanoscale Res. Lett. 2020, 15, 90. [Google Scholar] [CrossRef]
- Oh, I.; Pyo, J.; Kim, S. Resistive Switching and Synaptic Characteristics in ZnO/TaON-Based RRAM for Neuromorphic System. Nanomaterials 2022, 12, 2185. [Google Scholar] [CrossRef]
- Pyo, J.; Kim, S. Non-Volatile and Volatile Switching Behaviors Determined by First Reset in Ag/TaOx/TiN Device for Neuromorphic System. J. Alloys Compd. 2022, 896, 163075. [Google Scholar] [CrossRef]
- Ryu, H.; Kim, S. Self-Rectifying Resistive Switching and Short-Term Memory Characteristics in Pt/HFO2/TaOx/TiN Artificial Synaptic Device. Nanomaterials 2020, 10, 2159. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jung, S.; Kim, M.H.; Kim, T.H.; Bang, S.; Cho, S.; Park, B.G. Nano-Cone Resistive Memory for Ultralow Power Operation. Nanotechnology 2017, 28, 125207. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Jeon, B.; Lee, Y.; Kim, D.; Cho, Y.; Kim, S. Prospects and Applications of Volatile Memristors. Appl. Phys. Lett. 2022, 121, 010501. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I.Z.; Yang, L.; Zhao, C. Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application. Nanomaterials 2020, 10, 1437. [Google Scholar] [CrossRef]
- Song, B.; Xu, H.; Liu, H.; Li, Q. Impact of Threshold Voltage Variation on 1S1R Crossbar Array with Threshold Switching Selectors. Appl. Phys. A Mater. Sci. Process 2017, 123, 356. [Google Scholar] [CrossRef]
- Ryu, J.H.; Mahata, C.; Kim, S. Long-Term and Short-Term Plasticity of Ta2O5/HfO2 Memristor for Hardware Neuromorphic Application. J. Alloys Compd. 2021, 850, 156675. [Google Scholar] [CrossRef]
- Park, J.; Kim, T.-H.; Kwon, O.; Ismail, M.; Mahata, C.; Kim, Y.; Kim, S.; Kim, S. Implementation of Convolutional Neural Network and 8-Bit Reservoir Computing in CMOS Compatible VRRAM. Nano Energy 2022, 104, 107886. [Google Scholar] [CrossRef]
- Li, Y.; Fuller, E.J.; Sugar, J.D.; Yoo, S.; Ashby, D.S.; Bennett, C.H.; Horton, R.D.; Bartsch, M.S.; Marinella, M.J.; Lu, W.D.; et al. Filament-Free Bulk Resistive Memory Enables Deterministic Analogue Switching. Adv. Mater. 2020, 32, 2003984. [Google Scholar] [CrossRef]
- Baek, I.G.; Park, C.J.; Ju, H.; Seong, D.J.; Ahn, H.S.; Kim, J.H.; Yang, M.K.; Song, S.H.; Kim, E.M.; Park, S.O.; et al. Realization of Vertical Resistive Memory (VRRAM) Using Cost Effective 3D Process. In Proceedings of the 2011 International Electron Devices Meeting IEDM, Washington, DC, USA, 5–7 December 2011. [Google Scholar] [CrossRef]
- Wang, W.; Song, W.; Yao, P.; Li, Y.; van Nostrand, J.; Qiu, Q.; Ielmini, D.; Yang, J.J. Integration and Co-Design of Memristive Devices and Algorithms for Artificial Intelligence. iScience 2020, 23, 101809. [Google Scholar] [CrossRef]
- Huang, M.; Tan, A.J.; Mann, M.; Bauer, U.; Ouedraogo, R.; Beach, G.S.D. Three-Terminal Resistive Switch Based on Metal/Metal Oxide Redox Reactions. Sci. Rep. 2017, 7, 7452. [Google Scholar] [CrossRef]
- Lee, J.; Nikam, R.D.; Kwak, M.; Kwak, H.; Kim, S.; Hwang, H. Improvement of Synaptic Properties in Oxygen-Based Synaptic Transistors Due to the Accelerated Ion Migration in Sub-Stoichiometric Channels. Adv. Electron. Mater. 2021, 7, 2100219. [Google Scholar] [CrossRef]
- Moon, K.; Lim, S.; Park, J.; Sung, C.; Oh, S.; Woo, J.; Lee, J.; Hwang, H. RRAM-Based Synapse Devices for Neuromorphic Systems. Faraday Discuss. 2019, 213, 421–451. [Google Scholar] [CrossRef]
- He, Y.; Jiang, S.; Chen, C.; Wan, C.; Shi, Y.; Wan, Q. Electrolyte-Gated Neuromorphic Transistors for Brain-like Dynamic Computing. J. Appl. Phys. 2021, 130, 190904. [Google Scholar] [CrossRef]
- Qi, S.; Hu, Y.; Dai, C.; Chen, P.; Wu, Z.; Webster, T.J.; Dai, M. Short Communication: An Updated Design to Implement Artificial Neuron Synaptic Behaviors in One Device with a Control Gate. Int. J. Nanomed. 2020, 15, 6239–6245. [Google Scholar] [CrossRef] [PubMed]
- Boybat, I.; le Gallo, M.; Nandakumar, S.R.; Moraitis, T.; Parnell, T.; Tuma, T.; Rajendran, B.; Leblebici, Y.; Sebastian, A.; Eleftheriou, E. Neuromorphic Computing with Multi-Memristive Synapses. Nat. Commun. 2018, 9, 2514. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, B.; Qu, Z.; Zhao, H.; Li, Q.; Zeng, Z.; Yang, R. Characterization of the Inhomogeneity of Pt/CeOx/Pt Resistive Switching Devices Prepared by Magnetron Sputtering. Nanotechnology 2021, 32, 145710. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, D.; Choi, W.S.; Kim, C.; Choi, S.J.; Bae, J.H.; Kim, D.M.; Kim, S.; Kim, D.H. Effect of Oxygen Flow Rate on Long-Term and Short-Term Schottky Barrier Modulations in Pd/IGZO/SiO2/P+-Si Memristors. Mater. Sci. Semicond Process 2023, 153, 107183. [Google Scholar] [CrossRef]
- Kong, P.; Pu, Y.; Ma, P.; Zhu, J. Relationship between Oxygen Defects and Properties of Scandium Oxide Films Prepared by Ion-Beam Sputtering. Coatings 2019, 9, 517. [Google Scholar] [CrossRef]
- Lee, J.; Schell, W.; Zhu, X.; Kioupakis, E.; Lu, W.D. Charge Transition of Oxygen Vacancies during Resistive Switching in Oxide-Based RRAM. ACS Appl. Mater. Interfaces 2019, 11, 11579–11586. [Google Scholar] [CrossRef]
- Yim, K.; Yong, Y.; Lee, J.; Lee, K.; Nahm, H.H.; Yoo, J.; Lee, C.; Hwang, C.S.; Han, S. Novel High-Κ Dielectrics for next-Generation Electronic Devices Screened by Automated Ab Initio Calculations. NPG Asia Mater. 2015, 7, e190. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, L.; Chen, C.; Zhu, Y.; Wan, C.; Wan, Q. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al2O3/HfO2 Dielectrics. Chin. Phys. Lett. 2022, 39, 118501. [Google Scholar] [CrossRef]
- Tang, W.M.; Aboudi, U.; Provine, J.; Howe, R.T.; Wong, H.S.P. Improved Performance of Bottom-Contact Organic Thin-Film Transistor Using Al Doped HfO2 Gate Dielectric. IEEE Trans. Electron. Devices 2014, 61, 2398–2403. [Google Scholar] [CrossRef]
- Sokolov, A.S.; Son, S.K.; Lim, D.; Han, H.H.; Jeon, Y.R.; Lee, J.H.; Choi, C. Comparative Study of Al2O3, HfO2, and HfAlOx for Improved Self-Compliance Bipolar Resistive Switching. J. Am. Ceram. Soc. 2017, 100, 5638–5648. [Google Scholar] [CrossRef]
- Li, H.K.; Chen, T.P.; Liu, P.; Hu, S.G.; Liu, Y.; Zhang, Q.; Lee, P.S. A Light-Stimulated Synaptic Transistor with Synaptic Plasticity and Memory Functions Based on InGaZnOx-Al2O3 Thin Film Structure. J. Appl. Phys. 2016, 119, 244505. [Google Scholar] [CrossRef]
- Wu, G.; Sahoo, A.K. Influence of Oxygen Flow Rate on Channel Width Dependent Electrical Properties of Indium Gallium Zinc Oxide Thin-Film Transistors. Nanomaterials 2020, 10, 2357. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Yang, Y.; Feng, P.; Shi, Y.; Wan, Q. Short-Term Plasticity and Synaptic Filtering Emulated in Electrolyte-Gated IGZO Transistors. IEEE Electron. Device Lett. 2016, 37, 299–302. [Google Scholar] [CrossRef]
- Williams, D.B.; Carter, C.B. Diffraction in TEM; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Chang, T.C.; Chang, K.C.; Tsai, T.M.; Chu, T.J.; Sze, S.M. Resistance Random Access Memory. Mater. Today 2016, 19, 254–264. [Google Scholar] [CrossRef]
- Ling, H.; Koutsouras, D.A.; Kazemzadeh, S.; van de Burgt, Y.; Yan, F.; Gkoupidenis, P. Electrolyte-Gated Transistors for Synaptic Electronics, Neuromorphic Computing, and Adaptable Biointerfacing. Appl. Phys. Rev 2020, 7, 011307. [Google Scholar] [CrossRef]
- Bersuker, G.; Gilmer, D.C.; Veksler, D. Metal-Oxide Resistive Random Access Memory (RRAM) Technology: Material and Operation Details and Ramifications. Adv. Non-Volatile Mem. Storage Technol. 2019, 2, 35–102. [Google Scholar] [CrossRef]
- Kao, Y.F.; Zhuang, W.C.; Lin, C.J.; King, Y.C. A Study of the Variability in Contact Resistive Random Access Memory by Stochastic Vacancy Model. Nanoscale Res. Lett. 2018, 13, 213. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Roy, K. Short-Term Plasticity and Long-Term Potentiation in Magnetic Tunnel Junctions: Towards Volatile Synapses. Phys. Rev. Appl. 2015, 5, 024012. [Google Scholar] [CrossRef]
- Luo, C.; Kuner, T.; Kuner, R. Synaptic Plasticity in Pathological Pain. Trends Neurosci. 2014, 37, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wu, H.; Gao, B.; Yao, P.; Zhang, X.; Peng, X.; Yu, S.; Qian, H. A Methodology to Improve Linearity of Analog RRAM for Neuromorphic Computing. In Proceedings of the IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 18–22 June 2018. [Google Scholar] [CrossRef]
Amplitude (V) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Pulse number (N) | 1 | 2 | 5 | 10 | 20 | 50 | ||
Pulse width (μs) | 10 | 50 | 100 | 500 | 1000 | |||
Figure 4a (amplitude) | tdecacy (ms) | 0.040 | 0.046 | 0.050 | 0.056 | 0.063 | 0.073 | 0.086 |
I0 (μA) | 26.00 | 42.29 | 56.80 | 69.60 | 81.03 | 91.25 | 99.63 | |
Figure 4b (pulse number) | tdecay (ms) | 0.060 | 0.070 | 0.076 | 0.095 | 0.096 | 0.130 | |
I0 (μA) | 80.49 | 81.65 | 82.70 | 83.42 | 84.19 | 85.13 | ||
Figure 4c (pulse width) | tdecay (ms) | 0.046 | 0.056 | 0.060 | 0.080 | 0.090 | ||
I0 (μA) | 70.79 | 78.91 | 80.72 | 82.80 | 83.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyo, J.; Bae, J.-H.; Kim, S.; Cho, S. Short-Term Memory Characteristics of IGZO-Based Three-Terminal Devices. Materials 2023, 16, 1249. https://doi.org/10.3390/ma16031249
Pyo J, Bae J-H, Kim S, Cho S. Short-Term Memory Characteristics of IGZO-Based Three-Terminal Devices. Materials. 2023; 16(3):1249. https://doi.org/10.3390/ma16031249
Chicago/Turabian StylePyo, Juyeong, Jong-Ho Bae, Sungjun Kim, and Seongjae Cho. 2023. "Short-Term Memory Characteristics of IGZO-Based Three-Terminal Devices" Materials 16, no. 3: 1249. https://doi.org/10.3390/ma16031249
APA StylePyo, J., Bae, J. -H., Kim, S., & Cho, S. (2023). Short-Term Memory Characteristics of IGZO-Based Three-Terminal Devices. Materials, 16(3), 1249. https://doi.org/10.3390/ma16031249