Chemically Activated Carbon Based on Biomass for Adsorption of Fe(III) and Mn(II) Ions from Aqueous Solution
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Instruments
2.3. Preparation of Activated Carbon
2.4. Batch Sorption Experiments
- The effect of pH on metal adsorption was investigated. In this case, 0.05 g of activated carbon was incubated for 120 min at 25 °C with 25 mL of Fe(III) or Mn(II) ions. An amount of 0.1N NaOH or 0.1N HCl was used to adjust the pH of this combination to a range of 1 to 6. The residual concentration of each element was calculated by atomic absorption after the mixture had been filtered using Whatman filter paper and agitated until equilibrium. Adsorbent dosages ranging from 0.025 to 0.5 g were added to various bottles containing 25 mL of metal solution, and the mixture was vigorously shaken for 2 h at a speed of 100 rpm, a temperature of 25 °C, and at pH 3 for Fe(III) and pH 6 for Mn(II). Then, each flask’s contents were filtered and examined.
- Different time intervals, including 5, 15, 30, 60, 120, 180 min., and 24 h, were tested to determine the impact of contact time on the elimination of metal ions. The activated carbon (0.05 g) adsorbent was applied to various conical flasks holding 25 mL of metal ions at a temperature of 25 °C and at pH 3 for iron and pH 6 for manganese solutions. For each of the various selected contact times, the bottles were closed, set on a mechanical shaker, and agitated at 100 rotations per minute (rpm). Each agitation period was followed by filtering and analysis of the contents of each flask.
- Temperature-dependent rates and degrees of adsorption were studied for 120 min at 25, 35, 50, and 65 °C at pH 3 for Fe(III) and pH 6 for Mn(II). The removal of Fe(III) and Mn(II) ions from aqueous solution was investigated using 0.05 g of adsorbent at pH 3 for Fe(III) and pH 6 for Mn(II). The time to reach equilibrium was 1 h.
- How some interfering ions, such as anions or cations, affected the effectiveness of adsorption was investigated. The percentage of Fe(III) and Mn(II) uptake in various cations, such as Na(I), Mg(II), and K(I), as well as other anions, such as chlorides, sulfates, and nitrates, was studied. To address this issue, 0.03 g of adsorbent was agitated with 10 mL of Fe(III) or Mn(II) starting solution containing the same concentration of interfering ion. After filtering, it was determined whether Fe(III) or Mn(II) ions were taken up. Adsorption uptake and the removal percentage were calculated using Equations (1) and (2):
3. Results and Discussion
3.1. Adsorption of Metal Ions from Aqueous Solutions Using Prepared Rice Husk-Based Activated Carbons
Preliminary Sorption Investigation
3.2. Characterization of Prepared Activated Carbon
3.2.1. Physical Properties
Apparent Density
Packed Density
Yield
BET Adsorption–Desorption Measurements
Elemental Analyses
3.2.2. Chemical Properties
Surface Functional Groups of the Prepared Adsorbents (FT-IR Analysis)
Scanning Electron Microscopy (SEM)
3.3. Iron and Manganese Adsorption Studies
3.3.1. Effect of pH on the Adsorption of Iron and Manganese Ions
3.3.2. Effect of Contact Time on Adsorption of Iron and Manganese
3.3.3. Effect of Adsorbent Dose
3.3.4. Effect of Initial Metal Ion Concentration
3.3.5. Effect of Interfering Ions (Cations and Anions)
3.4. Adsorption Isotherms
3.4.1. Langmuir Isotherm
3.4.2. Freundlich Isotherm
3.4.3. Temkin Isotherm
3.5. Adsorption Kinetic Studies
3.5.1. Kinetic First-Order Model
3.5.2. Kinetic Second-Order Model
3.6. Thermodynamic Parameters
3.7. Application Study
3.8. Comparison Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef]
- Freitas, L.; Bueno, S.M. Carvão Ativo: Breve Histórico e Estudo de Sua Eficiência na Retenção de Fármacos. Rev. Cient. Unilago 2014, 1, 2. [Google Scholar]
- Tamanna, K.; Hasan, M.S.; Priyanka, D. Applicability of Activated Carbon Filtration in Surface Water Treatment. Asian J. Innov. Res. Sci. Eng. Technol. 2016, 1, 1–6. [Google Scholar]
- Danish, M.; Ahmad, T. A Review on Utilization of Wood Biomass as a Sustainable Precursor for Activated Carbon Production and Application. Renew. Sustain. Energy Rev. 2018, 87, 1–21. [Google Scholar] [CrossRef]
- González-García, P. Activated Carbon from Lignocellulosics Precursors: A Review of the Synthesis Methods, Characterization Techniques and Applications. Renew. Sustain. Energy Rev. 2018, 82, 1393–1414. [Google Scholar] [CrossRef]
- Khan, T.; Isa, M.H.; Mustafa, M.R.U.; Yeek-Chia, H.; Baloo, L.; Manan, T.S.B.A.; Saeed, M.O.J.R.A. Cr(VI) adsorption from aqueous solution by an agricultural waste based carbon. RSC Adv. 2016, 6, 56365–56374. [Google Scholar] [CrossRef]
- Zhan, C.; Sharma, P.R.; He, H.; Sharma, S.K.; McCauley-Pearl, A.; Wang, R.; Hsiao, B.S. Rice husk based nanocellulose scaffolds for highly efficient removal of heavy metal ions from contaminated water. Environ. Sci. Water Res. Technol. 2020, 6, 3080–3090. [Google Scholar] [CrossRef]
- Kim, D.W.; Kil, H.S.; Nakabayashi, K.; Yoon, S.H.; Miyawaki, J. Structural elucidation of physical and chemical activation mechanisms based on the microdomain structure model. Carbon 2017, 114, 98–105. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, 04691. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Environ. Toxicol. 2012, 101, 133–164. [Google Scholar]
- Duffus, J.H. “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef]
- Türkmen, D.; Bakhshpour, M.; Akgönüllü, S.; Aşır, S.; Denizli, A. Heavy Metal Ions Removal from Wastewater Using Cryogels: A Review. Front. Sustain. 2022, 3, 765592. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and application of Granular activated carbon from biomass waste materials for water treatment: A review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Gotore, O.; Munodawafa, A.; Rameshprabu, R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [Google Scholar]
- Amer, A.; Elewa, A.; Attalah, M.; Gad, H. Removal of some heavy metals contaminants from aqueous solutions by applying biomass-based modified activated carbon. Egypt. J. Chem. 2021, 64, 5929–5944. [Google Scholar]
- Gad, H.M.; Awwad, N.S.; El-Khalafawy, A.; Daifullah, A.A.; El-Reefy, S.A.; Aly, H.F. Purification of industrial phosphoric acid using silica produced from rice husk (part 1). Arab. J. Nuclear Sci. Appl. 2008, 43, 65–74. [Google Scholar]
- Yakout, S.M.; El-Deen, G.S. Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arab. J. Chem. 2012, 9 (Suppl. 2), S1155–S1162. [Google Scholar] [CrossRef]
- Ahmenda, M.; John, M.M.; Clarke, S.J.; Marshall, W.E.; Rao, R.M. Potential of Agricultural By-Products Based Activated Carbons for Use in Raw Sugar and Decolourization. J. Sci. Food Agric. 1997, 75, 117–124. [Google Scholar]
- Yan, B.; Feng, L.; Zheng, J.; Zheng, Q.; Jiang, S.; Zhang, C.; Ding, Y.; Han, J.; Chen, W.; He, S. High performance supercapacitors based on wood-derived thick carbon electrodes synthesized via green activation process. Inorg. Chem. Front. 2022, 9, 6108–6123. [Google Scholar] [CrossRef]
- Hataba, A.A.; Keshta, A.T.; Mead, H.; El-Shafey, N. Hematological, Biochemical and Histological alterations induced by oral administration of Thiamethoxam and Acetamiprid in male rats. Biochem. Lett. 2014, 10, 113–125. [Google Scholar] [CrossRef]
- Tang, X.; Zhu, X.; Huang, K.; Wang, J.; Guo, Y.; Xie, B.; Liang, H. Can ultrafiltration singly treat the iron-and manganese-containing groundwater. J. Hazard. Mater. 2021, 409, 124983. [Google Scholar] [CrossRef]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef]
- Martone, P.T.; Estevez, J.M.; Lu, F.; Ruel, K.; Denny, M.W.; Somerville, C.; Ralph, J. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr. Biol. 2009, 19, 169–175. [Google Scholar] [CrossRef]
- Duan, C.; Ma, T.; Wang, J.; Zhou, Y. Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. J. Water Process Eng. 2020, 37, 101339. [Google Scholar] [CrossRef]
- Hasanpour, M.; Hatami, M. Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Adv. Colloid Interface Sci. 2020, 284, 10224. [Google Scholar] [CrossRef]
- Muñiz, G.; Fierro, V.; Celzard, A.; Furdin, G.; Gonzalez-Sánchez, G.; Ballinas, M.L. Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II). J. Hazard. Mater. 2009, 165, 893–902. [Google Scholar] [CrossRef]
- Chai, Y.; Qin, P.; Zhang, J.; Li, T.; Dai, Z.; Wu, Z. Simultaneous removal of Fe(II) and Mn(II) from acid mine wastewater by electro-Fenton process. Process Saf. Environ. Protect. 2020, 143, 76–90. [Google Scholar] [CrossRef]
- Ali, A. Removal of Mn(II) from water using chemically modified banana peels as efficient adsorbent. Environ. Nanotechnol. Monit. Manag. 2017, 7, 57–63. [Google Scholar] [CrossRef]
- Phatai, P.; Wittayakun, J.; Grisdanurak, N.; Chen, W.H.; Wan, M.W.; Kan, C.C. Removal of manganese ions from synthetic groundwater by oxidation using KMnO4 and the characterization of produced MnO2 particles. Water Sci. Technol. 2010, 62, 1719–1726. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Singh, S.N.; Gode, F. Fly ash for the removal of Mn(II) from aqueous solutions and wastewaters. J. Chem. Eng. 2007, 132, 319–323. [Google Scholar] [CrossRef]
- Babatunde, R.I.; Ibrahim, A.A. Removal of Heavy Metal from Waste Water Using Activated Carbon from Rice Husk. Int. J. Adv. Sci. Res. Eng. 2020, 6. [Google Scholar] [CrossRef]
- Chiban, M.; Soudani, A.; Sinan, F.; Persin, M. Wastewater treatment by batch adsorption method onto micro-particles of dried Withaniafrutescens plant as a new adsorbent. J. Environ. Manag. 2012, 95, S61–S65. [Google Scholar] [CrossRef] [PubMed]
- Bassyouni, M.; Mansi, A.E.; Elgabry, A.; Ibrahim, B.A.; Kassem, O.A.; Alhebeshy, R. Utilization of carbon nanotubes in removal of heavy metals from wastewater: A review of the CNTs’ potential and current challenges. Appl. Phys. A 2020, 126, 38. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Plane Surface of Glass, Mica and Olatinum. J. Am. Chem. Soc. 1918, 40, 1361–1368. [Google Scholar] [CrossRef]
- Pan, S.Y.; Syu, W.J.; Chang, T.K.; Lee, C.H. A multiple model approach for evaluating the performance of time-lapse capsules in trapping heavy metals from water bodies. RSC Adv. 2020, 10, 16490–16501. [Google Scholar] [CrossRef] [PubMed]
- Freundlich, H. Über die adsorption in lösungen. Z. Chem. 1097, 57, 385–470. [Google Scholar] [CrossRef]
- Xiong, L.; Yang, Y.; Mai, J.; Sun, W.; Zhang, C.; Wei, D.; Ni, J. Adsorption behavior of methylene blue onto titanate nanotubes. J. Chem. Eng. 2010, 156, 313–320. [Google Scholar] [CrossRef]
- Temkin, M.J.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physiochim. URSS 1940, 12, 217–222. [Google Scholar]
- Aslani, C.K.; Amik, O. Active Carbon/PAN composite adsorbent for uranium removal: Modeling adsorption isotherm data, thermodynamic and kinetic studies. Appl. Radiat. Isot. 2021, 168, 109474. [Google Scholar] [CrossRef]
- Yuh-Shan, H. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 2004, 59, 171–177. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Mostafapour, F.K.; Haseeb, S.; Balarak, D.; Moein, H.; Sajadi, A.A.; Jalalzaei, Z. Thermodynamic study of amoxicillin and naphthalene adsorption on activated carbon derived from Salvadora persica. Int. J. Pharm. Investig. 2021, 11, 41–45. [Google Scholar] [CrossRef]
- Hossain, N.; Nizamuddin, S.; Shah, K. Thermal-chemical modified rice husk-based porous adsorbents for Cu(II), Pb(II), Zn(II), Mn(II) and Fe(III) adsorption. J. Water Process Eng. 2022, 46, 102620. [Google Scholar] [CrossRef]
- Gomaa, H.; Sayed, A.; Mahross, M.; Abdel-Hakim, M.; Othman, I.M.; Li, J.; El-Bahy, S.M. A hybrid spongy-like porous carbon-based on azopyrazole-benzenesulfonamide derivative for highly selective Fe3+-adsorption from real water samples. Microporous Mesoporous Mater. 2022, 330, 111578. [Google Scholar] [CrossRef]
- Ajala, M.A.; Abdulkareem, A.S.; Tijani, J.O.; Kovo, A.S. Adsorptive behaviour of rutile phased titania nanoparticles supported on acid-modified kaolinite clay for the removal of selected heavy metal ions from mining wastewater. Appl. Water Sci. 2022, 12, 19. [Google Scholar] [CrossRef]
- Mubarak, M.F.; Mohamed, A.M.G.; Keshawy, M.; Abd elMoghny, T.; Shehata, N. Adsorption of heavy metals and hardness ions from groundwater onto modified zeolite: Batch and column studies. Alex. Eng. J. 2022, 61, 4189–4207. [Google Scholar] [CrossRef]
- Maneechakr, P.; Karnjanakom, S. Environmental surface chemistries and adsorption behaviors of metal cations (Fe3+, Fe2+, Ca2+ and Zn2+) on manganese dioxide-modified green biochar. RSC Adv. 2019, 9, 24074–24086. [Google Scholar] [CrossRef] [Green Version]
Symbols | Conditions | Methods |
---|---|---|
AC(C) | 700 °C, 120 min | Activation by NaOH (1M) |
AC(C-1) | 700 °C, 120 min | Activation by (1M) H3PO4 |
AC(C-2) | 700 °C, 120 min | Activation by (1M) CH3COOH |
AC(C-3) | 700 °C, 120 min | Carbonization |
Type of Carbon | pH= 1.5 | pH = 3 | pH = 6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Fe(III) | Mn(II) | Fe(III) | Mn(II) | Mn(II) | ||||||
Ce | % Removal | Ce | % Removal | Ce | % Removal | Ce | % Removal | Ce | % Removal | |
AC(C) | 45.15 | 9.7 | 17.5 | 65 | 29.19 | 41.60 | 25.09 | 49.80 | 12.79 | 74.41 |
AC (C-1) | 40.3 | 19.4 | 19.75 | 60.5 | 7.01 | 85.98 | 24.78 | 50.44 | 11.20 | 77.59 |
AC(C-2) | 45.35 | 9.3 | 18.45 | 63.1 | 36.42 | 27.14 | 27.07 | 45.85 | 9.59 | 80.81 |
AC(C-3) | 45.25 | 9.5 | 14.2 | 71.6 | 28.3 | 43.39 | 26.22 | 47.55 | 3.52 | 92.94 |
Sample | Apparent Density (g/cm3) | Packed Density (g/cm3) | Yield, % | Surface Area (m2/g) | Average Pore Radius nm | Total Pore Volume cc/g |
---|---|---|---|---|---|---|
AC(C-3) | 0.477 | 0.591 | 17.6 | 228.46 | 1.845 | 0.2108 |
AC(C-2) | 0.52 | 0.55 | 30.7 | 226.63 | 1.849 | 0.2095 |
AC(C-1) | 0.48 | 0.64 | 24 | 69.89 | 2.848 | 0.0995 |
AC(C) | 0.64 | 0.72 | 25.7 | 48.68 | 2.78 | 0.0677 |
Adsorbent,% | C | Al | O | Si | Cu | Zn | K | Cl | Ca | P | Mg | Na |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AC(C-3) | 36.12 | − | 33.51 | 16.46 | 2.96 | 2.44 | 0.52 | − | − | 7.99 | - | - |
AC(C-2) | 43.5 | 0.06 | 41.72 | 14.18 | 0.06 | - | 0.22 | 0.05 | 0.09 | - | 0.07 | 0.04 |
AC(C-1) | 52.12 | 0.04 | 51 | 10.95 | 0.04 | - | 0.67 | 0.02 | - | 5.75 | 0.11 | 0.07 |
AC(C) | 48.86 | 0.03 | 39.42 | 6.24 | 0.01 | - | 0.58 | 0.13 | 0.2 | - | 0.15 | 5.21 |
Fe(III) | Mn(II) | ||||
---|---|---|---|---|---|
pH | Removal, % | Up Take, mg/g | pH | Removal, % | Uptake, mg/g |
1 | 6.36 | 1.60 | 1.5 | 43.14 | 10.79 |
1.5 | 9.50 | 2.38 | 3 | 47.6 | 11.9 |
2 | 9.95 | 2.49 | 4 | 47.83 | 11.96 |
2.5 | 33.13 | 8.28 | 5 | 55.97 | 13.99 |
3 | 43.40 | 10.85 | 6 | 80.96 | 20.24 |
Adsorbent | Contact Time | Fe(III) | Mn(II) | ||
---|---|---|---|---|---|
Removal, % | Uptake, mg/g | Removal, % | Uptake, mg/g | ||
AC(C-3) | 5 min. | 31.21 | 7.8025 | 57.19 | 14.2962 |
15 min | 39.57 | 9.8933 | 57.95 | 14.4883 | |
30 min | 49.63 | 12.4077 | 58.89 | 14.7227 | |
40 min | 57.9 | 13.885 | 62.4 | 16.081 | |
50 min | 57.79 | 13.972 | 62.95 | 16.236 | |
60 min. | 61.58 | 15.3945 | 66.31 | 16.5772 | |
120 min. | 60.56 | 15.14 | 65.8 | 16.449 | |
180 min. | 60.62 | 15.154 | 66.08 | 16.5199 | |
24 h | 60.16 | 15.0395 | 65.58 | 16.394 |
Adsorbent | Adsorbent Dosage, g | Fe(III) | Mn(II) | ||
---|---|---|---|---|---|
Removal, % | Uptake, mg/g | Removal, % | Uptake, mg/g | ||
AC(C-3) | 0.02 | 48.22 | 24.11 | 58.7 | 20.35 |
0.05 | 61.58 | 15.39 | 62.54 | 15.63 | |
0.075 | 67.58 | 11.26 | 71.86 | 12.91 | |
0.1 | 68.96 | 8.62 | 74.3 | 9.28 | |
0.2 | 69.72 | 4.35 | 75.5 | 4.71 | |
0.5 | 69.88 | 1.74 | 76.34 | 1.9 |
Adsorbent | Initial Metal Ion Conc., (mg/L) | Fe(III) | Mn(II) | ||
---|---|---|---|---|---|
Removal, % | Uptake, mg/g | Removal, % | Uptake, mg/g | ||
AC(C-3) | 10 | 79.00 | 3.95 | 97.85 | 4.8925 |
25 | 66.72 | 8.34 | 94.36 | 11.795 | |
50 | 43.46 | 10.865 | 92.30 | 23.075 | |
100 | 40.89 | 20.445 | 87.55 | 43.775 | |
200 | 29.25 | 29.25 | 71.99 | 71.997 | |
400 | 14.25 | 28.5 | 35.79 | 71.585 |
Adsorbent | Metal Ions | % Removal of Metal | Up Take mg/g | Type of Ions | % Removal In Presence Interfering Ions | Uptake (qe) mg/g | |
---|---|---|---|---|---|---|---|
AC(C-3) | Fe(III) | 85.48 | 21.37 | Cations in presence of Fe(III) | Fe3+ | 61.4 | 15.35 |
Na+ | 38.4 | 9.6 | |||||
Mg2+ | 24.6 | 6.15 | |||||
K+ | 17 | 4.25 | |||||
Anions in presence of Fe(III) | Fe3+ | 46.4 | 11.6 | ||||
Cl- | 33.2 | 8.3 | |||||
(SO4)2− | 39.8 | 9.95 | |||||
(NO3)− | 27 | 6.75 | |||||
Mn(II) | 91.52 | 22.88 | Cations in presence of Mn(II) | Mn2+ | 67.4 | 16.85 | |
Na+ | 33.8 | 8.45 | |||||
Mg2+ | 20.4 | 5.1 | |||||
k+ | 14.8 | 3.7 | |||||
Anions in presence of Mn(II) | Mn2+ | 53 | 13.25 | ||||
Cl- | 40.2 | 10.05 | |||||
(SO4)2− | 39.2 | 9.8 | |||||
(NO3)− | 32.8 | 8.2 |
Adsorbent | Langmuir Isotherm | Freundlich Isotherm | Temkin Isotherm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Metal Ions | qmax (cal) (mg/g) | qmax (exp) (mg/g) | B | R2 | n | Kf (mg/g) | R2 | AT (L/mg) | BT | bT | R2 | |
AC(C-3) | Fe(III) | 28.9 | 29.2 | 0.04 | 0.98 | 2.42 | 3.17 | 0.94 | 0.934 | 3.4 | 728.6 | 0.88 |
Mn(II) | 73.47 | 71.9 | 0.17 | 0.99 | 2.64 | 11.3 | 0.91 | 3.962 | 11.07 | 223.8 | 0.90 |
Adsorbent | qexp | Pseudo-First Order | Pseudo-Second Order | |||||
---|---|---|---|---|---|---|---|---|
Kf (min−1) | qe calc. (mg/g) | R2 | Ks (g/mg.h) | qe calc. (mg/g) | R2 | |||
AC(C-3) | Fe(III) | 15.39 | −0.330 | 27.52 | 0.931 | 0.0067 | 16.9 | 0.98 |
Mn(II) | 16.75 | −0.108 | 37.21 | 0.81844 | 0.0265 | 16.57 | 0.99 |
Adsorbent | R2 | ΔH° (KJ /mol) | ΔS° (J /mol. K) | ∆G° (KJ /mol) | ||||
---|---|---|---|---|---|---|---|---|
25 °C | 35 °C | 50 °C | 65 °C | |||||
AC (C-3) | Fe(III) | 0.92 | 19.31 | 120.96 | −16.73 | −17.94 | −20.36 | −21.57 |
Mn(II) | 0.85 | 20.57 | 125.94 | −16.85 | −18.10 | −20.61 | −21.87 |
Tested Parameters | Sample before Adding AC | Sample after Adding AC(C-3) | |
---|---|---|---|
Physical parameters | Color | Colorless | Colorless |
Taste | Accp. | Accp. | |
Odor | Odorless | Odorless | |
Conductivity | 986 | 920 | |
TDS | 631 | 552 | |
Turbidity | 2.96 | 0.59 | |
pH | 7.23 | 7.21 | |
Chloride | 151 | 143.8 | |
Sulfate | 90 | 88 | |
Fe | 0.95 | 0.290 | |
Mn | 0.5 | 0.118 | |
Residual Aluminum | N.D | N.D | |
Copper | N.D | N.D | |
Zinc | N.D | N.D | |
Nitrite | N.D | N.D | |
Floride | N.D | N.D | |
Total P. | N.D | N.D | |
Free. Chlorine | 1.3 | 1.1 |
Adsorbent | Adsorption Capacity (mg/g) | Reference | |
---|---|---|---|
Fe(III) | Mn(II) | ||
KOH activated silver (Ag) nanoparticle modified RH (AgNP-KOH-RH) | 9.46 | 1.29 | [43] |
Hybrid chitosan-derived mesoporous spongy carbon (HCMSC) bio-adsorbent | 165 | - | [44] |
Acid-activated kaolinite clay (AAC) | 3.957 | 0.783 | [45] |
Titanium (IV) oxide (TiO2) nanoparticles supported on the AAC (TiO2–AAC) | 3.989 | 0.678 | [45] |
Zeolite-4A | 150.1 | 94.1 | [46] |
TiO2@Zeolites-4A nanocomposite | 150.1 | 94.1 | [46] |
Biochar derived from the carbonization of palm kernel cake modified with KMnO4 and HNO3 | 70.67 | - | [47] |
Carbonized activated rice husk 700 °C AC(C-3) | 28.9 | 73.47 | Current study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elewa, A.M.; Amer, A.A.; Attallah, M.F.; Gad, H.A.; Al-Ahmed, Z.A.M.; Ahmed, I.A. Chemically Activated Carbon Based on Biomass for Adsorption of Fe(III) and Mn(II) Ions from Aqueous Solution. Materials 2023, 16, 1251. https://doi.org/10.3390/ma16031251
Elewa AM, Amer AA, Attallah MF, Gad HA, Al-Ahmed ZAM, Ahmed IA. Chemically Activated Carbon Based on Biomass for Adsorption of Fe(III) and Mn(II) Ions from Aqueous Solution. Materials. 2023; 16(3):1251. https://doi.org/10.3390/ma16031251
Chicago/Turabian StyleElewa, Amal M., Ahmed A. Amer, Mohamed F. Attallah, Hamdy A. Gad, Zehbah Ali Mohamed Al-Ahmed, and Inas A. Ahmed. 2023. "Chemically Activated Carbon Based on Biomass for Adsorption of Fe(III) and Mn(II) Ions from Aqueous Solution" Materials 16, no. 3: 1251. https://doi.org/10.3390/ma16031251
APA StyleElewa, A. M., Amer, A. A., Attallah, M. F., Gad, H. A., Al-Ahmed, Z. A. M., & Ahmed, I. A. (2023). Chemically Activated Carbon Based on Biomass for Adsorption of Fe(III) and Mn(II) Ions from Aqueous Solution. Materials, 16(3), 1251. https://doi.org/10.3390/ma16031251