Highly Efficient Cd2+ Removal Using Tobermorite with pH Self-Adjustment Ability from Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Tobermorite
2.2. Static Leaching Experiments
2.3. Batch Adsorption Experiments
2.4. Desorption Experiments
2.5. Characterizations
3. Results and Discussion
3.1. Characterizations of Tobermorite
3.2. Effects of Variables on Cd2+ Removal Using Tobermorite
3.2.1. Effect of Adsorbent Dosage
3.2.2. Effect of Initial Solution pH
3.2.3. Effects of Contact Time and Adsorption Kinetics
3.2.4. Effects of Initial Cd2+ Concentration and Adsorption Isotherms
3.3. Mechanism of Cd2+ Removal Using Tobermorite
3.4. Reusability Performance of Tobermorite
3.5. Ni2+ and Pb2+ Removal Using Tobermorite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardinale, A.M.; Carbone, C.; Fortunato, M.; Fabiano, B.; Reverberi, A.P. ZnAl-SO4 layered double hydroxide and allophane for Cr(VI), Cu(II) and Fe(III) adsorption in wastewater: Structure comparison and synergistic effects. Materials 2022, 15, 6887. [Google Scholar] [CrossRef] [PubMed]
- Takaya, Y.; Kadokura, M.; Kato, T.; Tokoro, C. Removal mechanisms of arsenite by coprecipitation with ferrihydrite. J. Environ. Chem. Eng. 2021, 9, 105819. [Google Scholar] [CrossRef]
- Sirohi, R.; Joun, J.; Lee, J.Y.; Yu, B.S.; Sim, S.J. Waste mitigation and resource recovery from food industry wastewater employing microalgae-bacterial consortium. Bioresour. Technol. 2022, 352, 127129. [Google Scholar] [CrossRef] [PubMed]
- Tejada-Tovar, C.; Villabona-Ortiz, A.; González-Delgado, Á. Adsorption study of continuous heavy metal ions (Pb2+, Cd2+, Ni2+) removal using cocoa (Theobroma cacao L.) pod husks. Materials 2022, 15, 6937. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Morton, D.W.; Johnson, B.B.; Mainali, B.; Angove, M.J. Manganese oxides and their application to metal ion and contaminant removal from wastewater. J. Water Process Eng. 2018, 26, 264–280. [Google Scholar] [CrossRef]
- Du, B.Y.; Zhou, J.; Lu, B.X.; Zhang, C.; Li, D.M.; Zhou, J.; Jiao, S.J.; Zhao, K.Q.; Zhang, H.H. Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter. Sci. Total Environ. 2020, 720, 137585. [Google Scholar] [CrossRef]
- Suzuki, K.; Kato, T.; Fuchida, S.; Tokoro, C. Removal mechanisms of cadmium by δ-MnO2 in adsorption and coprecipitation processes at pH 6. Chem. Geol. 2020, 550, 119744. [Google Scholar] [CrossRef]
- Fuchida, S.; Tajima, S.; Tokoro, C. Surface complexation modeling of Cd on Mn(III) oxyhydroxide (γ-MnOOH) for neutralizing model of acid mine drainage. Resour. Process. 2021, 67, 117–121. (In Japanese) [Google Scholar] [CrossRef]
- Qiu, B.B.; Tao, X.D.; Wang, H.; Li, W.K.; Ding, X.; Chu, H.Q. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. J. Anal. Appl. Pyrolysis 2021, 155, 105081. [Google Scholar] [CrossRef]
- Lu, Z.X.; Li, X.Z.; Qi, X.J. Cobalt-loaded resin can effectively remove arsenic in wastewater. Environ. Technol. Innov. 2021, 21, 101354. [Google Scholar] [CrossRef]
- Muñoz, S.V.; Martínez, M.S.; Torres, M.G.; Alcalá, S.P.; Quintanilla, F.; Rodríguez-Canto, A.; Rodríguez, J.R. Adsorption and removal of cadmium ions from simulated wastewater using commercial hydrophilic and hydrophobic silica nanoparticles: A comparison with sol-gel particles. Water Air Soil Pollut. 2014, 225, 2165. [Google Scholar] [CrossRef]
- Farooq, U.; Kozinski, J.A.; Khan, M.A.; Athar, M. Biosorption of heavy metal ions using wheat based biosorbents-a review of the recent literature. Bioresour. Technol. 2010, 101, 5043–5053. [Google Scholar] [CrossRef] [PubMed]
- Da’na, E. Adsorption of Heavy Metals on Functionalized-Mesoporous Silica: A Review. Microporous Mesoporous Mat. 2017, 247, 145–157. Available online: https://elkssl0a75e822c6f3334851117f8769a30e1clib.v.ntu.edu.cn:4443/10.1016/j.micromeso.2017.03.050 (accessed on 23 October 2022).
- Sun, X.L.; Yi, Y.L. pH evolution during water washing of incineration bottom ash and its effect on removal of heavy metals. Waste Manag. 2020, 104, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.S.; Huang, L.B.; Nguyen, T.A.H.; Ok, Y.S.; Rudolph, V.; Yang, H.; Zhang, D.K. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere 2016, 142, 64–71. [Google Scholar] [CrossRef]
- Komarneni, S.; Komarneni, J.S.; Newalkar, B.; Stout, S. Microwave-hydrothermal synthesis of Al-substituted tobermorite from zeolites. Mater. Res. Bull. 2002, 37, 1025–1032. [Google Scholar] [CrossRef]
- Liao, L.N.; Zhang, P. Preparation and characterization of polyaluminum titanium silicate and its performance in the treatment of low-turbidity water. Processes 2018, 6, 125. [Google Scholar] [CrossRef]
- Mitra, N.; Sarkar, P.K.; Prasad, D. Intermolecular dynamics of ultraconfined interlayer water in tobermorite: Influence on mechanical performance. Phys. Chem. Chem. Phys. 2019, 21, 11416–11423. [Google Scholar] [CrossRef]
- Liao, W.; Li, W.Q.; Fang, Z.G.; Lu, C.H.; Xu, Z.Z. Effect of different aluminum substitution rates on the structure of tobermorite. Materials 2019, 12, 3765. [Google Scholar] [CrossRef]
- Siauciunas, R.; Smalakys, G.; Eisinas, A.; Prichockiene, E. Synthesis of high crystallinity 1.13 nm tobermorite and xonotlite from natural rocks, their properties and application for heat-resistant products. Materials 2022, 15, 3474. [Google Scholar] [CrossRef]
- Wang, Z.H.; Xu, L.H.; Wu, D.S.; Zheng, S.L. Hydrothermal synthesis of mesoporous tobermorite from fly ash with enhanced removal performance towards Pb2+ from wastewater. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 632, 127775. [Google Scholar] [CrossRef]
- Monasterio, M.; Gaitero, J.J.; Manzano, H.; Dolado, J.S.; Cerveny, S. Effect of chemical environment on the dynamics of water confined in calcium silicate minerals: Natural and synthetic tobermorite. Langmuir 2015, 31, 4964–4972. [Google Scholar] [CrossRef]
- Moriyama, K.; Kojima, T.; Minawa, Y.; Matsumoto, S.; Nakamachi, K. Development of artificial seed crystal for crystallization of calcium phosphate. Environ. Technol. 2001, 22, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Jin, A.F.; He, J.T.; Zheng, H.; Huang, G.X. Experimental study on treating low phosphorus wastewater by combination of tobermorite and calcium fluoride. Environ. Sci. Technol. 2009, 32, 158–161. (In Chinese) [Google Scholar] [CrossRef]
- Tian, W.; Shui, A.; Ke, S.J.; Huang, L.L.; Xi, X.; He, C.; Chen, W.W.; Du, B. Low-temperature preparation of humidity self-regulating porous ceramics with high strength performance. Mater. Lett. 2019, 243, 128–131. [Google Scholar] [CrossRef]
- Zhao, Q.Y.; Li, T.; Cui, C.; Wang, Z.Z.; Ding, X.F.; Zhang, S.H. Preparation of porous silica powder via selective acid leaching of calcined tobermorite. Powder Technol. 2020, 375, 420–432. [Google Scholar] [CrossRef]
- Mahmoud, H.R.; El-Molla, S.A.; Saif, M. Improvement of physicochemical properties of Fe2O3/MgO nanomaterials by hydrothermal treatment for dye removal from industrial wastewater. Powder Technol. 2013, 249, 225–233. [Google Scholar] [CrossRef]
- Li, R.C.; Zheng, S.L.; Sun, Z.M.; Li, C.Q. Research on synthesis of flaky tobermorite from diatomite and its mechanism. Inorg. Chem. Ind. 2021, 53, 24–29. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, X.G.; Gou, Y.; Peng, H.; Mao, Y.T.; Wen, J. Nonthermal plasma sulfurized CuInS2/S-doped MgO nanosheets for efficient solar-light photocatalytic degradation of tetracycline. Colloid Surf. A-Physicochem. Eng. Asp. 2021, 625, 126900. [Google Scholar] [CrossRef]
- Zhu, X.H.; Jia, X.H. Removal of chromium (III) from monoammonium phosphate solutions by a porous adsorbent of fluor (calcium silicate) composites. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2020, 35, 384–392. [Google Scholar] [CrossRef]
- Cao, P.X.; Li, G.H.; Luo, J.; Rao, M.J.; Jiang, H.; Peng, Z.W.; Jiang, T. Alkali-reinforced hydrothermal synthesis of lathy tobermorite fibers using mixture of coal fly ash and lime. Constr. Build. Mater. 2020, 238, 117655. [Google Scholar] [CrossRef]
- Kamei, S.; Ihara, T.; Ouchi, T.; Uzawa, M.; Machinaga, O. A novel synthesis of phosphorus-substituted tobermorite with calcium silicate hydrate. J. Ceram. Soc. Jpn. 2014, 122, 664–667. [Google Scholar] [CrossRef]
- Wang, X.B.; Pan, Z.H. Chemical changes and reaction mechanism of hardened cement paste-(NH4)2SO4-H2O-system. Constr. Build. Mater. 2017, 152, 434–443. [Google Scholar] [CrossRef]
- Dai, S.W.; Wen, Q.; Huang, F.; Bao, Y.Q.; Xi, X.D.; Liao, Z.P.; Shi, J.; Ou, C.J.; Qin, J. Preparation and application of MgO-loaded tobermorite to simultaneously remove nitrogen and phosphorus from wastewater. Chem. Eng. J. 2022, 446, 136809. [Google Scholar] [CrossRef]
- Shi, Q.L.; Zhang, H.; Shahab, A.; Zeng, H.H.; Zeng, H.T.; Bacha, A.U.R.; Nabi, I.; Siddique, J.; Ullah, H. Efficient performance of magnesium oxide loaded biochar for the significant removal of Pb2+ and Cd2+ from aqueous solution. Ecotox. Environ. Safe. 2021, 221, 112426. [Google Scholar] [CrossRef] [PubMed]
- Ianăşi, C.; Picioruş, M.; Nicola, R.; Ciopec, M.; Negrea, A.; Nižňanský, D.; Len, A.; Almásy, L.; Putz, A.M. Removal of cadmium from aqueous solutions using inorganic porous nanocomposites. Korean J. Chem. Eng. 2019, 36, 688–700. [Google Scholar] [CrossRef]
- Ou, C.J.; Dai, S.W.; Li, S.X.; Xu, J.; Qin, J. Adsorption performance and mechanism investigation of Mn2+ by facile synthesized ceramsites from lime mud and coal fly ash. Korean J. Chem. Eng. 2021, 38, 505–513. [Google Scholar] [CrossRef]
- Bhanjana, G.; Dilbaghi, N.; Kim, K.H.; Kumar, S. Carbon nanotubes as sorbent material for removal of cadmium. J. Mol. Liq. 2017, 242, 966–970. [Google Scholar] [CrossRef]
- Tokoro, C.; Kato, T. Arsenate removal by resin-supported ferric ions: Mechanism, modeling, and column study. Adv. Powder Technol. 2021, 32, 1943–1950. [Google Scholar] [CrossRef]
- Javaheri, F.; Kheshti, Z.; Ghasemi, S.; Altaee, A. Enhancement of Cd2+ removal from aqueous solution by multifunctional mesoporous silica: Equilibrium isotherms and kinetics study. Sep. Purif. Technol. 2019, 224, 199–208. [Google Scholar] [CrossRef]
- Takdastan, A.; Samarbaf, S.; Tahmasebi, Y.; Alavi, N.; Babaei, A.A. Alkali modified oak waste residues as a cost-effective adsorbent for enhanced removal of cadmium from water: Isotherm, kinetic, thermodynamic and artificial neural network modeling. J. Ind. Eng. Chem. 2019, 78, 352–363. [Google Scholar] [CrossRef]
- Schütz, T.; Dolinská, S.; Hudec, P.; Mockovčiaková, A.; Znamenáčková, I. Cadmium adsorption on manganese modified bentonite and bentonite-quartz sand blend. Int. J. Miner. Process. 2016, 150, 32–38. [Google Scholar] [CrossRef]
- Lai, C.H.; Chen, C.Y.; Wei, B.L.; Yeh, S.H. Cadmium adsorption on goethite-coated sand in the presence of humic acid. Water Res. 2002, 36, 4943–4950. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Gu, B.W.; Kim, Y.K.; Park, S.J. Removal of Cu2+, Cd2+ from water using thermally treated lime stone. KSWST Jour. Wat. Treat. 2016, 24, 85–94. (In Korean) [Google Scholar] [CrossRef]
- Coleman, N.J.; Brassington, D.S.; Raza, A.; Lee, W.E. Calcium silicate sorbent from secondary waste ash: Heavy metals-removal from acidic solutions. Environ. Technol. 2006, 27, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.X.; Lu, L.C.; Wang, S.D.; Zhao, P.Q.; Zhang, W.L.; Zhang, S.X. Investigation on the formation of tobermorite in calcium silicate board and its influence factors under autoclaved curing. Constr. Build. Mater. 2017, 143, 280–288. [Google Scholar] [CrossRef]
- Zou, J.J.; Guo, C.B.; Zhou, X.Q.; Sun, Y.J.; Yang, Z. Sorption capacity and mechanism of Cr3+ on tobermorite derived from fly ash acid residue and carbide slag. Colloid Surf. A-Physicochem. Eng. Asp. 2018, 538, 825–833. [Google Scholar] [CrossRef]
- Cai, Y.C.; Li, C.L.; Wu, D.; Wang, W.; Tan, F.T.; Wang, X.Y.; Wong, P.K.; Qiao, X.L. Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution. Chem. Eng. J. 2017, 312, 158–166. [Google Scholar] [CrossRef]
- Gordienko, P.S.; Yarusova, S.B.; Suponina, A.P.; Yakimenko, L.V. Sorption of Cd2+ ions by silicate materials of different origins. Russ. J. Gen. Chem+. 2013, 83, 2709–2714. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Y.Q.; Mao, X.M.; Li, H. Efficient removal of Cu(II) from an aqueous solution using a novel chitosan assisted EDTA-intercalated hydrotalcite-like compound composite: Preparation, characterization, and adsorption mechanism. Chem. Eng. J. 2022, 438, 135531. [Google Scholar] [CrossRef]
- Qin, J.; Cui, C.; Cui, X.Y.; Hussain, A.; Yang, C.M.; Yang, S.H. Recycling of lime mud and fly ash for fabrication of anorthite ceramic at low sintering temperature. Ceram. Int. 2015, 41, 5648–5655. [Google Scholar] [CrossRef]
- Qin, J.; Cui, C.; Cui, X.Y.; Hussain, A.; Yang, C.M. Preparation and characterization of ceramsites from lime mud and coal fly ash. Constr. Build. Mater. 2015, 95, 10–17. [Google Scholar] [CrossRef]
- Guo, X.L.; Shi, H.S. Microstructure and heavy metal adsorption mechanisms of hydrothermally synthesized Al-substituted tobermorite. Mater. Struct. 2017, 50, 245. [Google Scholar] [CrossRef]
- Yang, X.L. Reactivity Waster AAC and Preparation and Application of Silicate-Shell-Ceramsite. Ph.D. Thesis, Nanjing University of Science & Technology, Nanjing, China, 2014. [Google Scholar]
Qe,exp | PFO Model | PSO Model | ||||
---|---|---|---|---|---|---|
24.97 | K1 | Qe | R2 | K2 | Qe | R2 |
0.51 | 17.45 | 0.9840 | 0.06 | 26.32 | 0.9993 |
Qm,exp | Langmuir Isotherm Model | Freundlich Isotherm Model | ||||
---|---|---|---|---|---|---|
Qm | KL | R2 | n | KF | R2 | |
42.14 | 39.18 | 5.82 | 0.8983 | 0.15 | 23.93 | 0.7873 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.; Yuan, S.; Córdova-Udaeta, M.; Oyama, K.; Tokoro, C. Highly Efficient Cd2+ Removal Using Tobermorite with pH Self-Adjustment Ability from Aqueous Solution. Materials 2023, 16, 1314. https://doi.org/10.3390/ma16031314
Qin J, Yuan S, Córdova-Udaeta M, Oyama K, Tokoro C. Highly Efficient Cd2+ Removal Using Tobermorite with pH Self-Adjustment Ability from Aqueous Solution. Materials. 2023; 16(3):1314. https://doi.org/10.3390/ma16031314
Chicago/Turabian StyleQin, Juan, Sujuan Yuan, Mauricio Córdova-Udaeta, Keishi Oyama, and Chiharu Tokoro. 2023. "Highly Efficient Cd2+ Removal Using Tobermorite with pH Self-Adjustment Ability from Aqueous Solution" Materials 16, no. 3: 1314. https://doi.org/10.3390/ma16031314
APA StyleQin, J., Yuan, S., Córdova-Udaeta, M., Oyama, K., & Tokoro, C. (2023). Highly Efficient Cd2+ Removal Using Tobermorite with pH Self-Adjustment Ability from Aqueous Solution. Materials, 16(3), 1314. https://doi.org/10.3390/ma16031314