Synthesis of a Room-Temperature Curable Acrylic-Urethane Polymer Binder for Road Markings with High Transmittance
Abstract
:1. Introduction
2. Experimental Setup
2.1. Materials
2.2. Synthesis of Triol Acrylic-Urethane
2.3. Room-Temperature Curing of Triol Acrylic-Urethane Polymer Binder
2.4. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dormidontova, T.V.; Filatova, A.V. Research of influence of quality of materials on a road marking of highways. Procedia Eng. 2016, 153, 933–937. [Google Scholar] [CrossRef]
- Nance, J.; Sparks, T.D. From streetlights to phosphors: A review on the visibility of roadway markings. Prog. Org. Coat. 2020, 148, 105749. [Google Scholar] [CrossRef]
- Charlton, S.G.; Starkey, N.J.; Malhotra, N. Using road markings as a continuous cue for speed choice. Acid Anal. Prev. 2018, 117, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Babic, D.; Burghardt, T.E.; Babic, D. Application and Characteristics of Waterborne Road Marking Paint. Int. J. Traffic Transp. Eng. 2015, 5, 150–169. [Google Scholar] [CrossRef]
- Burghardt, T.E.; Pashkevich, A.; Zakowska, L. Influence of volatile organic compounds emissions from road marking paints on ground-level ozone formation: Case study of Krakow, Poland. Transp. Res. Procedia 2016, 14, 714–723. [Google Scholar] [CrossRef]
- Cruz, M.; Klein, A.; Steiner, V. Sustainability assessment of road marking systems. Transp. Res. Procedia 2016, 14, 869–875. [Google Scholar] [CrossRef]
- Fatemi, S.; Varkani, M.K.; Ranjbar, Z.; Bastani, S. Optimization of the water-based road-marking paint by experimental design, mixture method. Prog. Org. Coat. 2006, 55, 337–344. [Google Scholar] [CrossRef]
- Treat, N.J.; Fors, B.P.; Kramer, J.W.; Christianson, M.; Chiu, C.; Read De Alaniz, J.; Hawker, C.J. Controlled radical polymerization of acrylates regulated by visible light. ACS Macro Lett. 2014, 3, 580–584. [Google Scholar] [CrossRef]
- Kozbial, A.; Guan, W.; Li, L. Manipulating the molecular conformation of a nanometer-thick environmentally friendly coating to control the surface energy. J. Mater. Chem. A Mater. Energy Sustain. 2017, 5, 9752–9759. [Google Scholar] [CrossRef]
- Yamago, S.; Yahata, Y.; Nakanishi, K.; Konishi, S.; Kayahara, E.; Nomura, A.; Goto, A.; Tsujii, Y. Synthesis of concentrated polymer brushes via surface-initiated organotellurium mediated living radical polymerization. Macromolecules 2013, 46, 6777–6785. [Google Scholar] [CrossRef]
- Yao, T.; Han, S.; Gong, X.; Zhang, J.; Chang, X.; Zhang, Z. Performance evaluation of a polyurethane-urea binder for asphalt pavement groove-filling. Constr. Build. Mater. 2022, 315, 125734. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Shi, X.; Hua, M.; Zhou, X.; Wang, X. Synthesis of core-shell acrylic-polyurethane hybrid latex as binder of aqueous pigment inks for digital inkjet printing. Prog. Nat. Sci. Mater. Int. 2012, 22, 71–78. [Google Scholar] [CrossRef]
- Mousaa, I.M.; Ali, N.M.; Attia, M.K. Preparation of high performance coating films based on urethane acrylate oligomer and liquid silicone rubber for corrosion protection of mild steel using electron beam radiation. Prog. Org. Coat. 2021, 155, 106222. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, H.; Chen, Y.; Ji, J.; You, Z.; Zhang, Y. A review on compatibility between crumb rubber and asphalt binder. Constr. Build. Mater. 2021, 297, 123820. [Google Scholar] [CrossRef]
- Karami, S.; Motahari, S.; Pishvaei, M.; Eskandari, N. Improvement of thermal properties of pigmented acrylic resin using silica aerogel. J. Appl. Polym. Sci. 2018, 135, 45640. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Pan, G.; Wang, Q. Gel-sol synthesis of surface-treated TiO2 nanoparticles and incorporation with waterborne acrylic resin systems for clear UV protective coatings. J. Coat. Technol. Res. 2014, 5, 785–791. [Google Scholar] [CrossRef]
- Hill, L.; Wicks, Z. Design considerations for high solids coatings. Prog. Org. Coat. 1982, 10, 55–89. [Google Scholar] [CrossRef]
- Duan, Y.; Huo, Y.; Duan, L. Preparation of acrylic resins modified with epoxy resins and their behaviors as binders of waterborne printing ink on plastic film. Colloids Surf. A 2017, 535, 225–231. [Google Scholar] [CrossRef]
- El-Molla, M.; Haggag, K.; El-Shall, N.F.; Shaker, N.O. Part 1: Synthesis and Evaluation of Novel Nano Scale Powdered Polyurethane Acrylate Binders. Adv. Chem. Eng. Sci. 2012, 2, 212–227. [Google Scholar] [CrossRef]
- Fourmentin, A.; Galy, J.; Charlot, A.; Gerard, J.-F. Bioinspired silica-containing polyurethane-acrylate films: Towards superhydrophobicity with tunable water adhesion. Polymer 2018, 155, 1–12. [Google Scholar] [CrossRef]
- Kasisomayajula, S.; Jadhav, N.; Gelling, V.J. Investigation on mechanical and conductive properties of polypyrrole/UV cured acrylate nanocomposite coatings. Prog. Org. Coat. 2021, 154, 106190. [Google Scholar] [CrossRef]
- Verdet, M.; Salenikovich, A.; Cointe, A.; Coureau, J.-L.; Galimard, P.; Munoz Toro, W. Mechanical Performance of Polyurethane and Epoxy Adhesives in Connections with Glued-in Rods at Elevated Temperatures. BioResources 2016, 11, 4. [Google Scholar] [CrossRef]
- Lim, W.-B.; Bae, J.-H.; Lee, G.-H.; Lee, J.-H.; Min, J.-G.; Huh, P. Transparency- and Repellency-Enhanced Acrylic-Based Binder for Stimuli-Responsive Road Paint Safety Improvement Technology. Materials 2021, 14, 6829. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.G.; Lim, W.-B.; Bae, J.-H.; Lee, J.-H.; Min, J.-G.; Kim, J.-W.; Yoon, K.-B.; Huh, P. The effect of acrylic silane crosslinker on room-temperature cured acrylate binder for road markings. Bull. Korean Chem. Soc. 2022, 1, 1045–1051. [Google Scholar] [CrossRef]
- Pieper, R.J.; Ekin, A.; Webster, D.C.; Casse, F.; Callow, J.A.; Callow, M.E. Combinatorial approach to study the effect of acrylic polyol composition on the properties of crosslinked siloxane-polyurethane fouling-release coatings. J. Coat. Technol. Res. 2007, 4, 453–461. [Google Scholar] [CrossRef]
- Wang, F.; Hu, J.Q.; Tu, W.P. Study on microstructure of UV-curable polyurethane acrylate films. Prog. Org. Coat. 2008, 62, 245–250. [Google Scholar] [CrossRef]
- Gower, M.D.; Shanks, R.A. The Effect of Varied Monomer Composition on Adhesive Performance and Peeling Master Curves for Acrylic Pressure-Sensitive Adhesives. J. Appl. Polym. Sci. 2004, 93, 2909–2917. [Google Scholar] [CrossRef]
- Nielsen, L.E.; Landel, R.F. Mechanical Properties of Polymers and Composites, 2nd ed.; Marcel Dekker: New York, NY, USA, 1994. [Google Scholar]
- Gowariker, V.R.; Viswanathan, N.V.; Sreedhar, J. Polymer Science, 1st ed.; New Age International Ltd.: New Delhi, India, 1986. [Google Scholar]
- Mark, J.; Ngai, K.; Graesslev, W. Physical Properties of Polymers, 3rd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Ingale, R.P.; Jagtap, R.N.; Adivarekar, R.V. Effect of molecular weight on performance properties of pressure-sensitive adhesive of poly (2-ethylhexl acrylate) synthesized by RAFT-mediated miniumulsion polymerization. J. Adhes. 2016, 92, 236–256. [Google Scholar] [CrossRef]
- Dzunuzovic, E.; Tasic, S.; Bozic, B.; Babic, D.; Dunjic, B. UV-curable hyperbranched urethane acrylate oligomers containing soybean fatty acids. Prog. Org. Coat. 2005, 52, 136–143. [Google Scholar] [CrossRef]
- Jiao, Z.; Yang, Q.; Wang, X.; Wang, C. UV-curable hyperbranched urethane acrylate oligomers modified with different fatty acids. Polym. Bull. 2017, 74, 5049–5063. [Google Scholar] [CrossRef]
- Tasic, S.; Bozic, B.; Dunjic, B. Hyperbranched urethane-acrylates. Hem. Ind. 2004, 58, 505–513. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Z.; Xu, H.; Ma, X.; Yin, J.; Tian, M. Revisiting the mechanism of redox polymerization to build the hydrogel with excellent properties using a novel initiator. Soft Matter. 2016, 12, 2575–2582. [Google Scholar] [CrossRef] [PubMed]
- Sarac, A.S. Redox polymerization. Prog. Polym. Sci. 1999, 24, 1149–1204. [Google Scholar] [CrossRef]
- Franken, P.; Rodrigues, S.B.; Collares, F.M.; Samuel, S.M.W.; Leitune, V.C.B. Influence of N-(2-hydroxyethyl)acrylamide addition in light- and dual-cured resin cements. J. Dent. 2019, 90, 103208. [Google Scholar] [CrossRef] [PubMed]
- Garra, P.; Dietlin, C.; Morlet-Savary, F.; Dumur, F.; Gigmes, D.; Fouassier, J.-P. Redox two-component initiated free radical and cationic polymerizations: Concepts, reactions and applications. Prog. Polym. Sci. 2019, 94, 33–56. [Google Scholar] [CrossRef]
- Li, L.; Cao, X.; Lee, L.J. Effect of dual-initiator on low temperature curing of unsaturated polyester resins. Polymer 2004, 45, 6601–6612. [Google Scholar] [CrossRef]
- Ge, R.-K.; Wang, J.-W.; Zhang, J.; Ren, H. UV-/moisture-curable silicone-modified poly(urethane–acrylate) adhesive for untreated PET substrate. Polym. Bull. 2018, 75, 3445–3458. [Google Scholar] [CrossRef]
- Wu, B.; Chen, X.; Liu, Z.; Jiang, L.; Yuan, Y.; Yan, P.; Zhou, C.; Lei, J. Room temperature curing of acrylate-functionalized polyurethanes based on the solvent-free redox polymerization. Prog. Org. Coat. 2018, 124, 16–24. [Google Scholar] [CrossRef]
- Chang, Y.-W.; Kim, S.W. UV curable transparent urethane-acrylate/clay nanocomposite coating materials with thermal barrier property. Surf. Coat. Technol. 2013, 232, 182–187. [Google Scholar] [CrossRef]
- Çanak, T.Ç.; Serhatlı, İ.E. Synthesis of fluorinated urethane acrylate based UV-curable coatings. Prog. Org. Coat. 2013, 76, 388–399. [Google Scholar] [CrossRef]
- Tan, Z.; Jaeger, R.; Vancso, G.J. Cross-linking studies of poly(dimethylsiloxane) networks—A comparison of inverse gas-chromatography. Swelling experiments and mechanical analysis. Polymer 1994, 35, 3230–3236. [Google Scholar] [CrossRef]
Functionality | Component | Content (wt. %) | ||||
---|---|---|---|---|---|---|
(a) | (b) | (c) | (d) | (e) | ||
acrylic compound | PMMA | 89 | 84 | 79 | 74 | 69 |
2-HEMA | 10 | 10 | 10 | 10 | 10 | |
t-AU | 5 | 10 | 15 | 20 | ||
catalyst | PTE | 1 | 1 | 1 | 1 | 1 |
curing agent | BPO | 1 | 1 | 1 | 1 | 1 |
Mn | Mw | PDI | |
---|---|---|---|
t-AU #1 | 10,467 | 22,512 | 2.15 |
t-AU #2 | 11,040 | 23,491 | 2.13 |
t-AU #3 | 10,822 | 21,234 | 1.96 |
Tensile Strength (MPa) | Elongation at Break (%) | Density (g/cm3) | Average Crosslink Density (10−3 mol kg−1) | |
---|---|---|---|---|
0 wt.% | 7.093 | 34.75 | - | - |
5 wt.% | 10.786 | 42.32 | 0.413 | 0.248 |
10 wt.% | 13.705 | 39.41 | 0.433 | 0.325 |
15 wt.% | 12.681 | 48.71 | 0.404 | 0.260 |
20 wt.% | 10.566 | 41.41 | 0.423 | 0.238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, W.-B.; Kim, J.-W.; Lee, J.-H.; Bae, J.-H.; Min, J.-G.; Huh, P. Synthesis of a Room-Temperature Curable Acrylic-Urethane Polymer Binder for Road Markings with High Transmittance. Materials 2023, 16, 1322. https://doi.org/10.3390/ma16031322
Lim W-B, Kim J-W, Lee J-H, Bae J-H, Min J-G, Huh P. Synthesis of a Room-Temperature Curable Acrylic-Urethane Polymer Binder for Road Markings with High Transmittance. Materials. 2023; 16(3):1322. https://doi.org/10.3390/ma16031322
Chicago/Turabian StyleLim, Won-Bin, Ju-Won Kim, Ju-Hong Lee, Ji-Hong Bae, Jin-Gyu Min, and PilHo Huh. 2023. "Synthesis of a Room-Temperature Curable Acrylic-Urethane Polymer Binder for Road Markings with High Transmittance" Materials 16, no. 3: 1322. https://doi.org/10.3390/ma16031322
APA StyleLim, W. -B., Kim, J. -W., Lee, J. -H., Bae, J. -H., Min, J. -G., & Huh, P. (2023). Synthesis of a Room-Temperature Curable Acrylic-Urethane Polymer Binder for Road Markings with High Transmittance. Materials, 16(3), 1322. https://doi.org/10.3390/ma16031322