Ni Porous Preforms Compacted with Al2O3 Particles and Al Binding Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Green Body Preparation from Ni + Al2O3 + Al Powder Mixture
2.2. Differential Thermal Analysis and Thermogravimetric Measurement (DTA/TG)
2.3. Thermal Oxidation
2.4. Porosity Measurement
2.5. Analyses of the Chemical Composition and Microstructure
2.6. Thermal Expansion
2.7. Hardness Measurement
3. Results and Discussion
3.1. Kinetics of Thermal Oxidation of CIP-ed Powder Mixture
3.2. Microstructure and Chemical Analysis of the Green Body and Oxidized CIP-ed Powder Mixture Obtained by SEM-EDS Microscopy
3.3. Chemical Analysis of the Green Body and Oxidized CIP-ed Powder Mixture Obtained by XRD Analysis
3.4. Differential Thermal Analysis of Green Body Powder Mixture
3.5. Thermal Stability of Oxidized CIP-ed Powder Mixture
3.6. Hardness Measurement
4. Conclusions
- The oxidation of green compacts to temperatures of 600 °C, 700 °C, and 800 °C has led to the decrease of porosity from 19.58 ± 0.00% (as-CIPed) to 15.24 ± 0.00% (600 °C), 14.59 ± 0.03% (700 °C) and 11.87 ± 8 × 10³ % (800 °C), respectively.
- The microstructural analysis confirmed the formation of thin NiO after oxidation at 600 °C, the formation of a coarse NiO layer, as well as the formation of aluminides Ni2Al3, NiAl, and spinel NiAl2O4 after oxidation at 700 °C and 800 °C. XRD measurements confirmed that these reactions were triggered by Al reacting with Ni.
- These reactions were monitored by DTA measurements. Measurements performed in Ar revealed the full disintegration of samples suffering from the lack of stability due to missing NiO support. The sample remained consistent after the DTA measurement in the air confirming thus the influence of the atmosphere on the stability of the final preform.
- The thermal expansion measurements confirmed the dimensional stability of oxidized samples after oxidation at 700 °C or 800 °C, i.e., after the completion of exothermic reactions of Al with Ni.
- The samples oxidized up to 600 °C, 700 °C and 800 °C have the hardness value of 64 ± 0.62, 75.7 ± 1.29, and 102.9 ± 1.56, respectively. The hardness increases with increasing oxidation temperature due to the thickness variations of NiO and the formation of in-situ Ni aluminides from Al binding agent. Both NiO and Ni aluminides have a significant effect on the hardness of the prepared material.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, Z.; Zhang, B.; Liu, Y.; Suo, T.; Xu, P.; Zhang, J. Interpenetrating phase composite foam based on porous aluminum skeleton for high energy absorption. Polym. Test. 2021, 93, 106917. [Google Scholar] [CrossRef]
- Lefebvre, L.P.; Banhart, J.; Dunand, D.C. Porous Metals and Metallic Foams: Current Status and Recent Developments. Adv. Eng. Mater. 2008, 10, 775–787. [Google Scholar] [CrossRef] [Green Version]
- Alhusseny, A.N.M.; Nasser, A.; Al-zurfi, N.M. High-porosity metal foams: Potentials, applications, and formulations. In Porosity-Process, Technologies and Applications, 1st ed.; Ghrib, T.H., Ed.; IntechOpen: London, UK, 2018; pp. 181–200. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Chen, Q.; Yang, C.; Huang, Y. Research process on property and application of metal porous materials. J. Alloys Comp. 2016, 654, 39–44. [Google Scholar] [CrossRef]
- Garcia-Moreno, F.; Mukherjee, M.; Solórzano, E.; Banhart, J. Metal foams–towards microcellular materials: Dedicated to Prof. Dr. H.-P. Degischer on the occasion of his 65th birthday. Int. J. Mater. Res. 2010, 101, 1134–1139. [Google Scholar] [CrossRef]
- Banhart, J. Manufacturing routes for metallic foams. JOM 2000, 52, 22–27. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, N.; Ola, O.; Xia, Y.; Zhu, Y. Porous ceramics: Light in weight but heavy in energy and environment technologies. Mater. Sci. Eng. R Rep. 2021, 143, 100589. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, L.; Wang, M.; Aindow, M. Fabrication of a multi-phase porous high-temperature Mo–Si–B alloy by in situ reaction synthesis. Powder Metall. 2019, 62, 258–266. [Google Scholar] [CrossRef]
- Brothers, A.H.; Banhart, J. Verfahren zur Herstellung Eines Metallmatrix-Nanoverbundwerkstoffes, Metallmatrix Nanoverbundwerkstoff und seine Anwendung. 2007, German Patent DE 10 2007 044 565. A1. Available online: https://www.helmholtz-berlin.de/media/media/spezial/people/banhart/html/C-Patents/c007_brothers2007.pdf (accessed on 30 November 2022).
- Elliott, J.C. Method of Producing Metal Foam. US Patent 2751289, 1956. Available online: https://patents.google.com/patent/US2751289A/en (accessed on 30 November 2022).
- Ohji, T.; Fukushima, M. Macro-porous ceramics: Processing and properties. Int. Mater. Rev. 2012, 57, 115–131. [Google Scholar] [CrossRef]
- Degischer, H.P.; Kriszt, B. (Eds.) Handbook of Cellular Metals> Production, Processing, Application; Wiley-VCH: Weinheim, Germany, 2002; p. 398. [Google Scholar] [CrossRef]
- Xie, X.; Li, Y.; Liu, Z.Q.; Haruta, M.; Shen, W. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749. [Google Scholar] [CrossRef]
- Zhang, H.H.; Li, F.F.; Wang, H.Y.; Tang, Y.G.; Peng, Z.G. Iron electrode derived from Fe/Co-MOF and its electrochemical performance for nickel-iron batteries. Mater. Rev. 2018, 32, 719–724. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, M. Nanoporous metals for catalytic and optical applications. MRS Bull. 2009, 34, 569–576. [Google Scholar] [CrossRef]
- He, D.; Wang, S.; Liu, R.; Wang, Z.; Xiong, X.; Zou, J. Experimental study on pore structure and performance of sintered porous wick. Mater. Res. Express 2018, 5, 026506. [Google Scholar] [CrossRef]
- Li, H.; Yuan, B.; Gao, Y.; Chung, C.Y.; Zhu, M. High-porosity NiTi superelastic alloys fabricated by low-pressure sintering using titanium hydride as pore-forming agent. J. Mater. Sci. 2009, 44, 875–881. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Yuan, B.; Zeng, M.Q.; Chung, C.Y.; Zhang, X.P. High porosity and large pore size shape memory alloys fabricated by using pore-forming agent (NH4HCO3) and capsule-free hot isostatic pressing. J. Mater. Proc. Technol. 2007, 192, 439–442. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, L.; Wei, S. Double-pore structure porous Mo–Si–B intermetallics fabricated by elemental powder metallurgy method using NH4HCO3 as pore-forming agent. Mater. Res. Express 2020, 7, 096518. [Google Scholar] [CrossRef]
- Li, H.; Liu, R.; Chen, J.; Wang, Z.; Xiong, X. Preparation of nickel porous materials by sinteringnickel oxalate and sodium chloride after blendingand reduction. J. Mater. Res. Technol. 2020, 9, 3149–3157. [Google Scholar] [CrossRef]
- Opálek, A.; Gaburjáková, M.; Švec, P.; Kúdela, S., Jr.; Štĕpánek, M.; Štefánik, P.; Iždinský, K. Impact of Al2O3 Particle Size on the Open Porosity of Ni/Al2O3 Composites Prepared by the Thermal Oxidation at Moderate Temperatures. Metals 2021, 11, 1582. [Google Scholar] [CrossRef]
- Ma, L.G.; Huang, Y.; Yang, J.L.; Le, H.R.; Sun, Y. Effect of plasticizer on the cracking of ceramic green bodies in gelcasting. J. Mater. Sci. 2005, 40, 4947–4949. [Google Scholar] [CrossRef]
- Ermilov, A.S.; Nurullaev, E.M. Optimization Of Fractional Composition Of The Filler Of Elastomer Composites. Mech. Comp. Mater. 2013, 49, 311–316. [Google Scholar] [CrossRef]
- Naito, M.; Hayakawa, O.; Nakahira, K.; Mori, H.; Tsubaki, J. Effect of particle shape on the particle size distribution measured with commercial equipment. Powder Tech. 1998, 100, 52–60. [Google Scholar] [CrossRef]
- Etemadi, R.; Wang, B.; Pillai, K.M.; Niroumand, B.; Omrani, E.; Rohatgi, R. Pressure infiltration processes to synthesize metal matrix composites–A review of metal matrix composites, the technology and process simulation. Mater. Manufactur. Proces. 2018, 33, 1261–1290. [Google Scholar] [CrossRef]
- Cantürk, S.B.; Kováčik, J. Review of Recent Development in Copper/Carbon Composites Prepared by Infiltration Technique. Energies 2022, 15, 5227. [Google Scholar] [CrossRef]
- Opálek, A.; Iždinský, K.; Nagy, Š.; Simančík, F.; Štefánik, P.; Kúdela Jr, S. Microstructure and Properties of Composites Prepared by Reactive Pressure Infiltration of Aluminium into Metal and Ceramic Powder Preforms. In Materials Science Forum, 1st ed.; Longauerová, M., Zubko, P., Eds.; Trans Tech Publications Ltd.: Baech, Switzerland, 2014; pp. 523–526. [Google Scholar] [CrossRef]
- Morsi, K. Review: Reaction synthesis processing of Ni-Al intermetallic materials. Mater. Sci. Eng. A 2001, 299, 1–15. [Google Scholar] [CrossRef]
- Opalek, A.; Štefánik, P.; Iždinský, K.; Kúdela Jr, S.; Zemánková, M.; Švec Jr, P. The effect of atmosphere on reactions in Ni-Al green compacts subjected to thermal treatment in argon and air. Kov. Mater. 2014, 52, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Huang, D.; Zhang, Y.; Zhang, H.; Chen, W. Microstructure and Properties of Hollow Octet Nickel Lattice Materials. Materials 2022, 15, 8417. [Google Scholar] [CrossRef]
- Royal Society of Chemistry. Available online: https://www.rsc.org/periodic-table/element/28/nickel (accessed on 30 November 2022).
- Rashad, M.; Pan, F.; Tang, A.; Asif, M. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Natur. Sci. Mater. Inter. 2014, 24, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Piconi, C. 1.105–Alumina. Compreh. Biomater. 2011, 1, 73–94. [Google Scholar] [CrossRef]
- Iida, Y.; Shimada, K.; Ozaki, S. Non-stoichiometry of nickel oxide. Bull. Chem. Soc. Jpn. 1960, 33, 1372–1375. Available online: https://www.journal.csj.jp/doi/abs/10.1246/bcsj.33.1372 (accessed on 5 December 2022). [CrossRef] [Green Version]
- American Elements. Available online: https://www.americanelements.com/nickel-aluminide-nial3-12004-71-6 (accessed on 5 December 2022).
- Springer Materials. Available online: https://materials.springer.com/isp/crystallographic/docs/sd_1617090 (accessed on 5 December 2022).
- Springer Materials. Available online: https://materials.springer.com/isp/crystallographic/docs/sd_0532805 (accessed on 5 December 2022).
- SurfaceNet GmbH. Available online: https://surfacenet.de/crystal_products.html?crystal=173 (accessed on 5 December 2022).
- Klym, H.; Karbovnyk, I.; Piskunov, S.; Popov, A.I. Positron annihilation lifetime spectroscopy insight on free volume conversion of nanostructured MgAl2O4 ceramics. Nanomaterials 2021, 11, 3373. [Google Scholar] [CrossRef]
- Lushchik, A.; Feldbach, E.; Kotomin, E.A.; Kudryavtseva, I.; Kuzovkov, V.N.; Popov, A.I.; Seeman, V.; Shablonin, E. Distinctive features of diffusion-controlled radiation defect recombination in stoichiometric magnesium aluminate spinel single crystals and transparent polycrystalline ceramics. Sci. Rep. 2020, 10, 7810. [Google Scholar] [CrossRef]
Ni | Al | Al2O3 | NiO | NiAl3 | Ni2Al3 | NiAl | NiAl2O4 | |
---|---|---|---|---|---|---|---|---|
Density (g/cm3) | 8.9 [30,31] | 2.7 [32] | 3.90–3.97 [33] | 5.74–6.8 [34] | 7.5 [35] | 4.76 [36] | 5.96 [37] | 3.44 [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opálek, A.; Švec, P.; Žemlička, M.; Štěpánek, M.; Štefánik, P.; Kúdela, S., Jr.; Beronská, N.; Iždinský, K. Ni Porous Preforms Compacted with Al2O3 Particles and Al Binding Agent. Materials 2023, 16, 988. https://doi.org/10.3390/ma16030988
Opálek A, Švec P, Žemlička M, Štěpánek M, Štefánik P, Kúdela S Jr., Beronská N, Iždinský K. Ni Porous Preforms Compacted with Al2O3 Particles and Al Binding Agent. Materials. 2023; 16(3):988. https://doi.org/10.3390/ma16030988
Chicago/Turabian StyleOpálek, Andrej, Peter Švec, Matúš Žemlička, Matej Štěpánek, Pavol Štefánik, Stanislav Kúdela, Jr., Naďa Beronská, and Karol Iždinský. 2023. "Ni Porous Preforms Compacted with Al2O3 Particles and Al Binding Agent" Materials 16, no. 3: 988. https://doi.org/10.3390/ma16030988
APA StyleOpálek, A., Švec, P., Žemlička, M., Štěpánek, M., Štefánik, P., Kúdela, S., Jr., Beronská, N., & Iždinský, K. (2023). Ni Porous Preforms Compacted with Al2O3 Particles and Al Binding Agent. Materials, 16(3), 988. https://doi.org/10.3390/ma16030988