(Na, Zr) and (Ca, Zr) Phosphate-Molybdates and Phosphate-Tungstates: I–Synthesis, Sintering and Characterization
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthesis and Characterization of the Powders
3.2. Sintering and Characterization of the Ceramics
4. Conclusions
- 1.
- The submicron-grade powders of the Na1-xZr2(PO4)3-x(XO4)x and Ca1-xZr2(PO4)3-x(XO4)x compounds, X = Mo, W (0 ≤ x ≤ 0.5) were obtained by sol-gel synthesis. The powders were agglomerated; large agglomerates of several microns in sizes consisted of individual nano- and submicron-sized particles. The sizes of individual particles of the Ca1-xZr2(PO4)3-x(XO4)x compounds varied from 50–100 to 300 nm; the ones for the Na1-xZr2(PO4)3-x(XO4)x compounds varied from ~20–30 nm to ~50–100 nm.
- 2.
- It follows from the analysis of the results obtained that the investigated compounds crystallize in the NZP-type structure, hexagonal syngony, Rc space group for the Na-containing phosphate–molybdates and phosphate–tungstates and R for the Ca-containing ones. The substitution of the phosphate anions (PO4)3− (R(P5+) = 0.17 Å) by a larger molybdate (MoO4)2− (R (Mo6+) = 0.41 Å) and tungstate (WO4)2− (R(W6+) = 0.44 Å) ions leads to an increasing of the unit cell parameters. With a decrease in the population of the extraframe positions in the phosphate–molybdates and phosphate–tungstates investigated, the thermal expansion parameters tend to approach zero.
- 3.
- The dependencies of the crystal lattice constants a and c as well as of the unit cell volume V on the heating temperature were studied by high-temperature X-ray diffraction. The dependencies of the mean thermal expansion coefficient (TEC) (αav) and of the volume coefficient (β) on the W and Mo contents in NZP and CZP compounds were investigated. The mean values of TEC (αav) for the Mo-containing NZP and CZP compounds are (2.97–4.41)·10−6 °C−1 and (1.45–1.55)·10−6 °C−1, respectively. The mean values of αav for the W-containing NZP and CZP compounds are (1.41–3.33)·10−6 °C−1 and (1.70–2.44)·10−6 °C−1, respectively. The increase in the tungsten content leads to a decrease in αav for the compounds with the NZP structure. The values of the volume TEC (β) and of the TEC anisotropy (Δα) for the NZP compounds decrease with increasing W content. The effects of Mo and W on the increase in β and Δα for the CZP compounds are insignificant.
- 4.
- The bulk of the NZP ceramic specimens obtained by SPS were characterized by high relative densities (ρrel> 97.5%). The full time of the SPS process, including the heating and cooling-down times, is ~11.5–16.5 min for the Mo-containing ceramics and ~15.1–18.1 min for the W-containing ones. The values of microhardness (Hv) of the ceramics ranged from 3.6 to 5.6 GPa, and the minimal fracture toughness factor (KIC) ranged from 0.9 to 1.6 MPa m1/2. The ceramics with the NZP structure have fine-grained microstructure; abnormal grain growth was observed in the ceramics with increased W contents. In the NZP ceramics with high Mo and W contents, one can provide high density at reduced sintering temperature.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Orlova, A.I.; Ojovan, M.I. Ceramic mineral waste-forms for nuclear waste immobilization. Materials 2019, 12, 2638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohre, A.; Avasthi, K.; Pet’kov, V.I. Vitreous and crystalline phosphate high level waste matrices: Present status and future challenges. J. Ind. Eng. Chem. 2017, 50, 1–14. [Google Scholar] [CrossRef]
- Ewing, R.; Wang, L. Phosphates as Nuclear Waste forms. Review in Mineralogy and Geochemistry. Phosphates Geochem. Geobiol. Mater. Importance 2002, 48, 673–689. [Google Scholar] [CrossRef]
- Orlova, A.I. Crystalline phosphates for HLW immobilization—Composition, structure, properties and production of ceramics. Spark Plasma Sintering as a promising sintering technology. J. Nucl. Mater. 2022, 559, 153407. [Google Scholar] [CrossRef]
- Hayward, P.J.; Vance, E.R.; Cann, C.D.; George, I.M. Influence of heat treatment and redox conditions on crystallization of titanosilicate glass-ceramics. In Nuclear Waste Management 2 (Advances in Ceramics; V.20); Clark, D.E., White, W.B., Machiels, A.J., Eds.; American Ceramic Society: Westerville, OH, USA, 1986; pp. 215–222. [Google Scholar]
- Hayward, P.J.; Vance, E.R.; Cann, C.D. Crystallization of titanosilicate glasses for nuclear waste immobilization. J. Am. Ceram. Soc. 1989, 72, 579–586. [Google Scholar] [CrossRef]
- Sobolev, I.A.; Ojovan, M.I.; Shcherbatova, T.D.; Batyukhnova, O.G. Glass for Radioactive Waste; Energoatomizdat: Moscow, Russia, 1999; p. 238. (In Russian) [Google Scholar]
- Pet’kov, V.I.; Sukhanov, M.V.; Kurazhkovskaya, V.S. Molybdenum fixation in crystalline NZP matrices. Radiochemistry 2003, 45, 620–625. [Google Scholar] [CrossRef]
- Chourasiaa, R.; Shrivastavaa, O.P.; Wattal, P.K. Synthesis, characterization and structure refinement of sodium zirconium molibdato-phosphate: Na0.9Zr2Mo0.1P2.9O12 (MoNZP). J. Alloys Compd. 2009, 473, 579–583. [Google Scholar] [CrossRef]
- Bohre, A.; Shrivastava, O.P.; Avasthi, K. Solid state synthesis and structural refinement of polycrystalline phases: Ca1-2xZr4M2xP6-2xO24 (M = Mo, x = 0.1 and 0.3). Arab. J. Chem. 2016, 9, 736–744. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.P.; Gopal, B. Immobilization of “Mo6+” in monazite lattice: Synthesis and characterization of new phosphomolybdates, La1-xCaxP1-yMoyO4, where x = y = 0.1–0.9. J. Am. Ceram. Soc. 2011, 94, 1008–1013. [Google Scholar] [CrossRef]
- Daub, M.; Lehner, A.J.; Höppe, H.A. Synthesis, crystal structure and optical properties of Na2RE(PO4)(WO)4 (RE = Y,Tb-Lu). Dalton Trans. 2012, 41, 12121–12128. [Google Scholar] [CrossRef]
- Sukhanov, M.V.; Pet’kov, V.I.; Kurazhkovskaya, V.S.; Eremin, N.N.; Urusov, V.S. Computer-assisted structure simulation, synthesis, and phase formation of molybdophosphates A1-xZr2(PO4)3-x(MoO4)x (A is an alkali metal). Russ. J. Inorg. Chem. 2006, 51, 706–711. [Google Scholar] [CrossRef]
- Bennouna, L.; Arsalane, S.; Brochu, R.; Lee, M.R.; Chassaing, J.; Quarton, M. Spécificités des ions NbIV and MoIV dans les monophosphates de type Nasicon. J. Solid State Chem. 1995, 114, 224–229. [Google Scholar] [CrossRef]
- Buzlukov, A.L.; Fedorov, D.S.; Serdtsev, A.V.; Kotova, I.Y.; Tyutyunnik, A.P.; Korona, D.V.; Baklanova, Y.V.; Ogloblichev, V.V.; Kozhevnikova, N.M.; Denisova, T.A.; et al. Ion mobility in triple sodium molybdates and tungstates with a NASICON structure. J. Exp. Theor. Phys. 2022, 134, 42–50. [Google Scholar] [CrossRef]
- Vereshchagina, T.A.; Fomenko, E.V.; Vasilieva, N.G.; Solovyov, L.A.; Vereshchagin, S.N.; Bazarova, Z.G.; Anshits, A.G. A novel layered zirconium molybdate as a precursor to a ceramic zirconomolybdate host for lanthanide bearing radioactive waste. J. Mater. Chem. 2011, 21, 12001–12007. [Google Scholar] [CrossRef]
- Oikonomou, P.; Dedeloudis, C.; Stournaras, C.J.; Ftikos, C. [NZP]: A new family of ceramics with low thermal expansion and tunable properties. J. Eur. Ceram. Soc. 2007, 27, 1253–1258. [Google Scholar] [CrossRef]
- Orlova, A.I.; Zyryanov, V.N.; Kotelnikov, A.R.; Demarin, V.T.; Rakitina, E.V. Ceramic phosphate matrices for high-level waste. Behavior under hydrothermal conditions. Radiochemistry 1993, 35, 120–126. (In Russian) [Google Scholar]
- Arinicheva, Y.; Clavier, N.; Neumeier, S.; Podor, R.; Bukaemskiy, A.; Klinkenberg, M.; Roth, G.; Dacheux, N.; Bosbach, D. Effect of powder morphology on sintering kinetics, microstructure and mechanical properties of monazite ceramics. J. Eur. Ceram. Soc. 2018, 38, 227–234. [Google Scholar] [CrossRef]
- Dey, A.; Das Gupta, A.; Basu, D.; Ambashta, R.D.; Wattal, P.K.; Kumar, S.; Sen, D.; Mazumder, S. A comparative study of conventionally sintered, microwave sintered and hot isostatic press sintered NZP and CZP structures interacted with fluoride. Ceram. Int. 2013, 39, 9351–9359. [Google Scholar] [CrossRef]
- Orlova, A.I. Isomorphism in NZP-like phosphates and radiochemical problems. Radiochemistry 2002, 44, 385–403. [Google Scholar] [CrossRef]
- Volkov, Y.F.; Tomilin, S.V.; Orlova, A.I.; Lizin, A.A.; Spiryakov, V.I.; Lukinykh, A.N. Rhombohedral of actinide phosphates AIMIV2(P04)3 (MIV = U, Np, Pu; AI = Na, K, Rb). Radiochemistry 2003, 45, 319–328. [Google Scholar] [CrossRef]
- Orlova, A.I.; Koryttseva, A.K. Phosphates of pentavalent elements: Structure and properties. Crystallogr. Rep. 2004, 49, 811–819. [Google Scholar] [CrossRef]
- Alamo, J.; Roy, R. Ultralow-expansion ceramics in the system Na2O-ZrO2-P2O5-SiO2. J. Am. Ceram. Soc. 1984, 67, 78–80. [Google Scholar] [CrossRef]
- Tantri, S.P.; Ushadevi, S.; Ramasesha, S.K. High temperature X-ray studies on barium and strontium zirconium phosphate based low thermal expansion materials. Mater. Res. Bull. 2002, 37, 1141–1147. [Google Scholar] [CrossRef]
- Orlova, A.; Kanunov, A.E.; Samoilov, S.G.; Kazakova, A.Y.; Kazantsev, G.N. Study of calcium-containing orthophosphates of the structural type NaZr2(PO4)3 by high-temperature X-ray diffraction methods. Crystallogr. Rep. 2013, 58, 185–190. [Google Scholar] [CrossRef]
- Savinykh, D.O.; Khainakov, S.A.; Boldin, M.S.; Orlova, A.I.; Aleksandrov, A.A.; Lantsev, E.A.; Sakharov, N.V.; Murashov, A.A.; Garcia-Granda, S.; Nokhrin, A.V.; et al. Preparation of NZP-type Ca0.75+0.5xZr1.5Fe0.5(PO4)3-x(SiO4)x powders and ceramics, thermal expansion behavior. Inorg. Mater. 2018, 54, 1267–1273. [Google Scholar] [CrossRef]
- Alamo, J.; Roy, R. Zirconium phospho-sulfates with NaZr2(PO4)3-type structure. J. Solid State Chem. 1984, 51, 270–273. [Google Scholar] [CrossRef]
- Savinykh, D.O.; Khainakov, S.A.; Orlova, A.I.; Garcia-Granda, S. New phosphate-sulfates with NZP Structure. Russ. J. Inorg. Chem. 2018, 63, 685–694. [Google Scholar] [CrossRef]
- Pet’Kov, V.I.; Sukhanov, M.V.; Shipilov, A.S.; Kurazhkovskaya, V.S.; Borovikova, E.Y.; Sakharov, N.V.; Ermilova, M.M.; Orekhova, N.V. Synthesis and structure of vanadate phosphates of zirconium and alkaline metals. Russ. J. Inorg. Chem. 2013, 58, 1139–1145. [Google Scholar] [CrossRef]
- Sukhanov, M.V.; Pet’Kov, V.I.; Firsov, D.V.; Kurazhkovskaya, V.S.; Borovikova, E.Y. Synthesis, structure and thermal expansion of sodium zirconium arsenate phosphates. Russ. J. Inorg. Chem. 2011, 56, 1351–1357. [Google Scholar] [CrossRef]
- Slater, P.R.; Greaves, C. Synthesis and conductivities of sulfate/selenite phases related to Nasicon: NaxM’(II)xM’’(III)2-x(SO4)3-y(SeO4)y. J. Solid State Chem. 1993, 107, 12–18. [Google Scholar] [CrossRef]
- Petkov, V.I.; Orlova, A.I.; Egorkova, O.V. On the existence of phases with a structure of NaZr2(PO4)3 in series of binary orthophosphates with different alkaline element to zirconium ratios. J. Struct. Chem. 1996, 37, 933–940. [Google Scholar] [CrossRef]
- Il’In, A.B.; Novikova, S.; Sukhanov, M.; Ermilova, M.M.; Orekhova, N.V.; Yaroslavtsev, A.B. Catalytic activity of NASICON-type phosphates for ethanol dehydration and dehydrogenation. Inorg. Mater. 2012, 48, 397–401. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Orlova, A.I. Crystal-chemical approach to predicting the thermal expansion of compounds in the NZP family. Inorg. Mater. 2003, 39, 1013–1023. [Google Scholar] [CrossRef]
- Lenain, G.E.; McKinstry, H.A.; Limaye, S.Y.; Woodward, A. Low thermal expansion of alkali-zirconium phosphates. Mater. Res. Bull. 1984, 19, 1451–1456. [Google Scholar] [CrossRef]
- Limaye, S.Y.; Agrawal, D.K.; McKinstry, H.A. Synthesis and Thermal Expansion of MZr4P6O24 (M = Mg, Ca, Sr, Ba). J. Am. Ceram. Soc. 1987, 70, 232–236. [Google Scholar] [CrossRef]
- Volgutov, V.Y.; Orlova, A.I. Thermal expansion of phosphates with the NaZr2(PO4)3 structure containing lanthanides and zirconium: R0.33Zr2(PO4)3 (R = Nd, Eu, Er) and Er0.33(1-x)Zr0.25xZr2(PO4)3. Crystallogr. Rep. 2015, 60, 721–728. [Google Scholar] [CrossRef]
- Carrasco, M.P.; Guillem, M.C.; Alarmo, J. Preparation and structural study of sodium germanium phosphate-sodium titanium phosphate solid solutions II. Evolution of thermal expansion with composition. Mater. Res. Bull. 1994, 29, 817–826. [Google Scholar] [CrossRef]
- Oota, T.; Yamai, I. Thermal Expansion Behavior of NaZr2(PO4)3Type Compounds. J. Am. Ceram. Soc. 1986, 69, 1–6. [Google Scholar] [CrossRef]
- Orlova, A.; Kemenov, D.; Pet’Kov, V.; Zharinova, M.; Kazantsev, G.; Samoĭlov, S.; Kurazhkovskaya, V. Ultralow and negative thermal expansion in zirconium phosphate ceramics. High Temp. High Press. 2002, 34, 315–322. [Google Scholar] [CrossRef]
- Orlova, A.I.; Kemenov, D.V.; Samoilov, S.G.; Kazantsev, G.N.; Pet’Kov, V.I. Thermal expansion of NZP-family alkali-metal (Na, K) zirconium phosphates. Inorg. Mater. 2000, 36, 955–1000. [Google Scholar] [CrossRef]
- Anantharamulu, N.; Rao, K.K.; Rambabu, G.; Kumar, B.V.; Radha, V.; Vithal, M. A wide-ranging review on Nasicon type materials. J. Mater. Sci. 2011, 46, 2821–2837. [Google Scholar] [CrossRef]
- Suganth, M.; Kumar, N.R.S.; Varadaraju, U.V. Synthesis and leachability studies of NZP and eulytine phases. Waste Manag. 1998, 18, 275–279. [Google Scholar] [CrossRef]
- Buvaneswari, G.; Varadaraju, U.V. Low leachability phosphate lattices for fixation of select metal ions. Mater. Res. Bull. 2000, 35, 1313–1323. [Google Scholar] [CrossRef]
- Pet’kov, V.; Asabina, E.; Loshkarev, V.; Sukhanov, M. Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization. J. Nucl. Mater. 2016, 471, 122–128. [Google Scholar] [CrossRef]
- Sukhanov, M.V.; Pet’kov, V.I.; Firsov, D.V. Sintering mechanism for high-density NZP ceramics. Inorg. Mater. 2011, 47, 674–678. [Google Scholar] [CrossRef]
- Tokita, M. Progress of Spark Plasma Sintering (SPS): Method, Systems, Ceramics Applications and Industrialization. Ceramics 2021, 4, 160–198. [Google Scholar] [CrossRef]
- Tokita, M. Spark Plasma Sintering (SPS) Method, Systems, and Applications (Chapter 11.2.3). In Handbook of Advanced Ceramics, 2nd ed.; Somiya, S., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 1149–1177. [Google Scholar] [CrossRef]
- Olevsky, E.A.; Dudina, D.V. Field-Assisted Sintering: Science and Application; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Orlova, A.I.; Koryttseva, A.K.; Kanunov, A.E.; Chuvil’Deev, V.N.; Moskvicheva, A.V.; Sakharov, N.V.; Boldin, M.S.; Nokhrin, A.V. Fabrication of NaZr2(PO4)3-type ceramic materials by spark plasma sintering. Inorg. Mater. 2012, 48, 372–377. [Google Scholar] [CrossRef]
- Potanina, E.; Orlova, A.; Nokhrin, A.; Boldin, M.; Sakharov, N.; Belkin, O.; Chuvil’Deev, V.; Tokarev, M.; Shotin, S.; Zelenov, A. Characterization of Nax(Ca/Sr)1-2xNdxWO4 complex tungstates fine-grained ceramics obtained by Spark Plasma Sintering. Ceram. Int. 2018, 44, 4033–4044. [Google Scholar] [CrossRef]
- Orlova, A.; Volgutov, V.; Mikhailov, D.; Bykov, D.; Skuratov, V.; Chuvil’Deev, V.; Nokhrin, A.; Boldin, M.; Sakharov, N. Phosphate Ca1/4Sr1/4Zr2(PO4)3 of the NaZr2(PO4)3 structure type: Synthesis of a dense ceramic material and its radiation testing. J. Nucl. Mater. 2014, 446, 232–239. [Google Scholar] [CrossRef]
- Papynov, E.; Shichalin, O.; Mayorov, V.; Modin, E.; Portnyagin, A.; Gridasova, E.; Agafonova, I.; Zakirova, A.; Tananaev, I.; Avramenko, V. Sol-gel and SPS combined synthesis of highly porous wollastonite ceramic materials with immobilized Au-NPs. Ceram. Int. 2017, 43, 8509–8516. [Google Scholar] [CrossRef]
- Shu, X.; Qing, Q.; Li, B.; Yang, Y.; Li, L.; Zhang, H.; Shao, D.; Lu, X. Rapid immobilization of complex simulated radionuclides by as-prepared Gd2Zr2O7 ceramics without structural design. J. Nucl. Mater. 2019, 526, 151782. [Google Scholar] [CrossRef]
- Shichalin, O.O.; Papynov, E.K.; Maiorov, V.Y.; Belov, A.A.; Modin, E.B.; Buravlev, I.Y.; Azarova, Y.A.; Golub, A.V.; Gridasova, E.A.; Sukhorada, A.E.; et al. Spark Plasma Sintering of Aluminosilicate Ceramic Matrices for Immobilization of Cesium Radionuclides. Radiochemistry 2019, 61, 185–191. [Google Scholar] [CrossRef]
- Mikhailov, D.A.; Potanina, E.A.; Orlova, A.I.; Nokhrin, A.V.; Boldin, M.S.; Belkin, O.A.; Sakharov, N.V.; Skuratov, V.A.; Kirilkin, N.S.; Chuvil’Deev, V.N. Radiation resistance and hydrolytic stability of Y0.95Cd0.05PO4-based ceramic with the xenotime structure. Inorg. Mater. 2021, 57, 760–765. [Google Scholar] [CrossRef]
- Mikhailov, D.; Orlova, A.; Malanina, N.; Nokhrin, A.; Potanina, E.; Chuvil’Deev, V.; Boldin, M.; Sakharov, N.; Belkin, O.; Kalenova, M.; et al. A study of fine-grained ceramics based on complex oxides ZrO2-Ln2O3 (Ln = Sm, Yb) obtained by Spark Plasma Sintering for inert matrix fuel. Ceram. Int. 2018, 44, 18595–18608. [Google Scholar] [CrossRef]
- Alekseeva, L.; Nokhrin, A.; Boldin, M.; Lantsev, E.; Murashov, A.; Orlova, A.; Chuvil’Deev, V. Study of the hydrolytic stability of fine-grained ceramics based on Y2.5Nd0.5AlO12 oxide with a garnet structure under hydrothermal conditions. Materials 2021, 14, 2152. [Google Scholar] [CrossRef]
- Berendeev, N.N.; Popov, A.A.; Pyaterikova, V.V.; Boldin, M.S.; Nokhrin, A.V.; Chuvil’deev, V.N.; Lantsev, E.A. Modeling of the distribution of thermal fields during spark plasma sintering of alumina ceramics. IOP Conf. Ser. Mater. Sci. Eng. 2019, 558, 012004. [Google Scholar] [CrossRef]
- Bernard-Granger, G.; Benameur, N.; Guizard, C.; Nygren, M. Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering. Scr. Mater. 2009, 60, 164–167. [Google Scholar] [CrossRef]
- Nečina, V.; Pabst, W. Reduction on temperature gradient and carbon contamination in electric current assisted sintering (ECAS/SPS) using a “saw-tooth” heating schedule. Ceram. Int. 2019, 45, 22987–22990. [Google Scholar] [CrossRef]
- Hammoud, H.; Garnier, V.; Fantozzi, G.; Lachaud, E.; Tadier, S. Mechanism of carbon contamination in transparent MgAl2O4 and Y3Al5O12 ceramics sintered by Spark Plasma Sintering. Ceramics 2019, 2, 612–619. [Google Scholar] [CrossRef]
- Mikhailov, D.A.; Potanina, E.A.; Nokhrin, A.V.; Orlova, A.I.; Yunin, P.A.; Sakharov, N.V.; Boldin, M.S.; Belkin, O.A.; Skuratov, V.A.; Issatov, A.T.; et al. Investigation of microstructure of fine-grained YPO4:Gd ceramics with xenotime structure after Xe irradiation. Ceramics 2022, 5, 237–252. [Google Scholar] [CrossRef]
- Nokhrin, A.; Andreev, P.; Boldin, M.; Chuvil’deev, V.; Chegurov, M.; Smetanina, K.; Gryaznov, M.; Shotin, S.; Nazarov, A.; Shcherbak, G.; et al. Investigation of microstructure and corrosion resistance of Ti-Al-V titanium alloys obtained by Spark Plasma Sintering. Metals 2021, 11, 945. [Google Scholar] [CrossRef]
- Wang, P.; Yang, M.; Zhang, S.; Tu, R.; Goto, T.; Zhang, L. Suppression of carbon contamination in SPSed CaF2 transparent ceramics by Mo foil. J. Eur. Ceram. Soc. 2017, 37, 4103–4107. [Google Scholar] [CrossRef]
- Wang, P.; Huang, Z.; Morita, K.; Li, Q.; Yang, M.; Zhang, S.; Goto, T.; Tu, R. Influence of spark plasma sintering conditions on microstructure, carbon contamination, and transmittance of CaF2 ceramics. J. Eur. Ceram. Soc. 2022, 42, 245–257. [Google Scholar] [CrossRef]
- Hagman, L.O.; Kierkegard, P. The crystal structure of NaM2IV (PO4)3; MeIV = Ge, Ti, Zr. Acta Chem. Scand. 1968, 22, 1822–1832. [Google Scholar] [CrossRef]
X | x | a, Å | c, Å | V, Å3 | |||
---|---|---|---|---|---|---|---|
NZP | CZP | NZP | CZP | NZP | CZP | ||
- | 0 | 8.799(4) | 8.784(6) | 22.826(7) | 22.736(0) | 1530.6(7) | 1519.4(7) |
Mo | 0.1 | 8.811(8) | 8.792(0) | 22.856(6) | 22.762(2) | 1536.9(9) | 1523.7(7) |
0.2 | 8.825(5) | 8.801(2) | 22.882(7) | 22.777(7) | 1543.5(3) | 1528.0(2) | |
0.3 | 8.833(4) | - | 22.904(9) | - | 1547.8(0) | - | |
0.4 | 8.851(9) | - | 22.921(5) | - | 1555.4(2) | - | |
0.5 | 8.891(7) | - | 22.897(1) | - | 1567.7(8) | - | |
W | 0.1 | 8.821(6) | 8.813(5) | 22.862(2) | 23.079(8) | 1540.7(7) | 1552.6(0) |
0.2 | 8.827(5) | 8.815(2) | 22.935(1) | 22.949(0) | 1547.7(9) | 1544.3(9) | |
0.3 | 8.833(3) | 8.827(4) | 22.989(5) | 22.996(8) | 1553.4(7) | 1551.9(0) | |
0.4 | 8.857(1) | - | 23.046(1) | - | 1565.7(0) | - | |
0.5 | 8.881(3) | - | 23.053(7) | - | 1574.8(0) | - |
X | x | αa·106 | αc·106 | αav·106 | β·106 | Δα·106 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
NZP | CZP | NZP | CZP | NZP | CZP | NZP | CZP | NZP | CZP | ||
- | 0 | −4.20 | −2.96 | 20.37 | 10.60 | 3.99 | 1.56 | 11.82 | 4.60 | 24.56 | 13.56 |
Mo | 0.1 | −4.43 | −2.73 | 19.82 | 10.10 | 3.66 | 1.55 | 10.90 | 4.71 | 24.25 | 12.83 |
0.2 | −3.63 | −2.61 | 20.50 | 9.57 | 4.41 | 1.45 | 13.14 | 4.30 | 24.12 | 12.18 | |
0.3 | −3.62 | - | 20.20 | - | 4.32 | - | 12.75 | - | 23.82 | - | |
0.4 | −4.29 | - | 17.49 | - | 2.97 | - | 8.75 | - | 21.79 | - | |
0.5 | −2.81 | - | 15.64 | - | 3.34 | - | 9.92 | - | 18.45 | - | |
W | 0.1 | −5.10 | −0.57 | 20.03 | 6.24 | 3.28 | 1.70 | 9.75 | 5.00 | 25.13 | 6.81 |
0.2 | −3.51 | −2.50 | 17.00 | 12.33 | 3.33 | 2.44 | 9.99 | 7.26 | 20.52 | 14.83 | |
0.3 | −2.94 | −2.26 | 15.09 | 10.80 | 3.07 | 2.09 | 9.23 | 6.29 | 18.04 | 13.06 | |
0.4 | −2.71 | - | 11.85 | - | 2.14 | - | 6.45 | - | 14.56 | - | |
0.5 | −3.71 | - | 11.65 | - | 1.41 | - | 4.23 | - | 15.36 | - |
X | x | Vh, oC/min | Ts, °C | tsps, min | ρ, % | Hv, GPa | KIC, MPa·m1/2 |
---|---|---|---|---|---|---|---|
Mo | 0.1 | 50 | 920 | 12.58 | 97.55 | 3.6 ± 0.5 | 1.0 ± 0.3 |
0.2 | 932 | 13.08 | 98.42 | 4.5 ± 0.8 | 1.1 ± 0.5 | ||
0.3 | 1110 | 16.50 | 100.07 | 5.3 ± 0.5 | 0.9 ± 0.3 | ||
0.4 | 975 | 13.58 | 100.06 | 5.1 ± 0.8 | 1.1 ± 0.6 | ||
0.5 | 861 | 11.50 | 101.66 | 5.3 ± 0.5 | 1.4 ± 0.3 | ||
W | 0.1 | 50 | 1190 | 18.08 | 97.70 | 5.3 ± 0.5 | 1.3 ± 0.3 |
0.2 | 1100 | 16.83 | 98.75 | 5.6 ± 0.6 | 1.6 ± 0.3 | ||
0.3 | 1110 | 17.58 | 98.59 | 5.6 ± 0.5 | 1.5 ± 0.3 | ||
0.4 | 1065 | 15.67 | 100.20 | 5.5 ± 0.4 | 1.1 ± 0.3 | ||
0.5 | 1065 | 15.08 | 100.70 | 5.6 ± 0.6 | 1.1 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaeva, M.E.; Savinykh, D.O.; Orlova, A.I.; Khainakov, S.A.; Nokhrin, A.V.; Boldin, M.S.; Garcia-Granda, S.; Murashov, A.A.; Chuvil’deev, V.N.; Yunin, P.A.; et al. (Na, Zr) and (Ca, Zr) Phosphate-Molybdates and Phosphate-Tungstates: I–Synthesis, Sintering and Characterization. Materials 2023, 16, 990. https://doi.org/10.3390/ma16030990
Karaeva ME, Savinykh DO, Orlova AI, Khainakov SA, Nokhrin AV, Boldin MS, Garcia-Granda S, Murashov AA, Chuvil’deev VN, Yunin PA, et al. (Na, Zr) and (Ca, Zr) Phosphate-Molybdates and Phosphate-Tungstates: I–Synthesis, Sintering and Characterization. Materials. 2023; 16(3):990. https://doi.org/10.3390/ma16030990
Chicago/Turabian StyleKaraeva, M. E., D. O. Savinykh, A. I. Orlova, S. A. Khainakov, A. V. Nokhrin, M. S. Boldin, S. Garcia-Granda, A. A. Murashov, V. N. Chuvil’deev, P. A. Yunin, and et al. 2023. "(Na, Zr) and (Ca, Zr) Phosphate-Molybdates and Phosphate-Tungstates: I–Synthesis, Sintering and Characterization" Materials 16, no. 3: 990. https://doi.org/10.3390/ma16030990
APA StyleKaraeva, M. E., Savinykh, D. O., Orlova, A. I., Khainakov, S. A., Nokhrin, A. V., Boldin, M. S., Garcia-Granda, S., Murashov, A. A., Chuvil’deev, V. N., Yunin, P. A., Nazarov, A. A., & Tabachkova, N. Y. (2023). (Na, Zr) and (Ca, Zr) Phosphate-Molybdates and Phosphate-Tungstates: I–Synthesis, Sintering and Characterization. Materials, 16(3), 990. https://doi.org/10.3390/ma16030990