The Use of Toothpastes Containing Different Formulations of Fluoride and Bioglass on Bleached Enamel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Bleaching Procedure
2.3. Toothpaste Treatment
2.4. Scanning Probe Microscope (SPM)
2.5. X-ray Photoelectron Spectroscopy (XPS)
2.6. Scanning Electron Microscopy (SEM)
2.7. Energy-Dispersive X-ray Spectrometry (EDS)
2.8. Statistical Analyses
3. Results
3.1. SPM and SEM
3.2. XPS and EDS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwon, S.R.; Wertz, P.W. Review of the Mechanism of Tooth Whitening. J. Esthet. Restor. Dent. 2015, 27, 240–257. [Google Scholar] [CrossRef]
- Kawamoto, K.; Tsujimoto, Y. Effects of the hydroxyl radical and hydrogen peroxide on tooth bleaching. J. Endod. 2004, 30, 45–50. [Google Scholar] [CrossRef]
- Haywood, H.O.; Heymann, V.B. Nightguard vital bleaching: How safe is it? Quintessence Int. 1991, 22, 515–523. [Google Scholar]
- Shannon, H.; Spencer, P.; Gross, K.; Tira, D. Characterization of enamel exposed to 10% carbamide peroxide bleaching agents. Quintessence Int. 1994, 24, 39–44. [Google Scholar]
- Sulieman, M.; Addy, M.; Macdonald, E.; Rees, J.S. A safety study in vitro for the effects of an in-office bleaching system on the integrity of enamel and dentine. J. Dent. 2004, 32, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Hegedüs, C.; Bistey, T.; Flóra-Nagy, E.; Keszthelyi, G.; Jenei, A. An atomic force microscopy study on the effect of bleaching agents on enamel surface. J. Dent. 1999, 27, 509–515. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Surface reactions of apatite dissolution. J. Colloid Interface Sci. 1997, 191, 489–497. [Google Scholar] [CrossRef]
- ten Cate, J.M.; Featherstone, J.D. Mechanistic aspects of the interactions between fluoride and dental enamel. Crit. Rev. Oral Biol. Med. 1991, 2, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Featherstone, J.D.; Doméjean, S. The role of remineralizing and anticaries agents in caries management. Adv. Dent. Res. 2012, 24, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Vieira-Junior, W.F.; Lima, D.A.; Tabchoury, C.P.; Ambrosano, G.M.; Aguiar, F.H.; Lovadino, J.R. Effect of Toothpaste Application Prior to Dental Bleaching on Whitening Effectiveness and Enamel Properties. Oper Dent. 2016, 41, E29–E38. [Google Scholar] [CrossRef]
- Yesilyurt, C.; Sezer, U.; Ayar, M.K.; Alp, C.K.; Tasdemir, T. The effect of a new calcium-based agent, Pro-Argin, on the microhardness of bleached enamel surface. Aust. Dent. J. 2013, 58, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Gjorgievska, E.; Nicholson, J.W. Prevention of enamel demineralization after tooth bleaching by bioactive glass incorporated into toothpaste. Aust. Dent. J. 2011, 56, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Al-Eesaa, N.A.; Johal, A.; Hill, R.G.; Wong, F.S.L. Fluoride-containing bioactive glass composite for orthodontic adhesives: Apatite formation properties. Dent. Mater. 2018, 34, 1127–1133. [Google Scholar] [CrossRef]
- Hench, L.L. The story of Bioglass®. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Burwell, A.K.; Litkowski, L.J.; Greenspan, D.C. Calcium sodium phosphosilicate (NovaMin): Remineralization potential. Adv. Dent. Res. 2009, 21, 35–39. [Google Scholar] [CrossRef]
- Raszewski, Z.; Chojnacka, K.; Kulbacka, J.; Mikulewicz, M. Mechanical Properties and Biocompatibility of 3D Printing Acrylic Material with Bioactive Components. J. Funct. Biomater. 2023, 14, 13. [Google Scholar] [CrossRef]
- Gjorgievska, E.S.; Nicholson, J.W.; Slipper, I.J.; Stevanovic, M.M. Remineralization of demineralized enamel by toothpastes: A scanning electron microscopy, energy dispersive X-ray analysis, and three-dimensional stereo-micrographic study. Microsc. Microanal. 2013, 19, 587–595. [Google Scholar] [CrossRef]
- Bakry, A.S.; Takahashi, H.; Otsuki, M.; Tagami, J. Evaluation of new treatment for incipient enamel demineralization using 45S5 bioglass. Dent Mater. 2014, 30, 314–320. [Google Scholar] [CrossRef]
- Bizreh, Y.; Milly, H. Effect of bioactive glass paste on efficacy and post-operative sensitivity associated with at-home bleaching using 20% carbamide peroxide: A randomized controlled clinical trial. Eur. J. Med. Res. 2022, 27, 194. [Google Scholar] [CrossRef]
- Sleibi, A.; Tappuni, A.R.; Davis, G.R.; Anderson, P.; Baysan, A. Comparison of efficacy of dental varnish containing fluoride either with CPP-ACP or bioglass on root caries: Ex vivo study. J. Dent. 2018, 73, 91–96. [Google Scholar] [CrossRef]
- de Freitas, A.C.P.; Espejo, L.C.; Botta, S.B.; de Sa Teixeira, F.; Luz, M.A.A.C.; Garone-Netto, N.; Matos, A.B.; da Silveira Salvadori, M.C.B. AFM analysis of bleaching effects on dental enamel microtopography. Appl. Surf. Sci. 2010, 256, 2915–2919. [Google Scholar] [CrossRef]
- Silikas, N.; Watts, D.C.; England, K.E.; Jandt, K.D. Surface fine structure of treated dentine investigated with tapping mode atomic force microscopy (TMAFM). J. Dent. 1999, 27, 137–144. [Google Scholar] [CrossRef]
- Park, J.K.K.H.; Hong, Y.; Kim, J.S.; Park, C. Surface morphology of laser deposited diamondlike films by atomic force microscopy imaging. Appl. Phys. Lett. 1996, 69, 779–781. [Google Scholar] [CrossRef]
- Coli, P.; Alaeddin, S.; Wennerberg, A.; Karlsson, S. In vitro dentin pretreatment: Surface roughness and adhesive shear bond strength. Eur. J. Oral. Sci. 1999, 107, 400–413. [Google Scholar] [CrossRef]
- Gong, V.; França, R. Nanoscale chemical surface characterization of four different types of dental pulp-capping materials. J. Dent. 2017, 58, 11–18. [Google Scholar] [CrossRef]
- Bonafé, S.K.E.; Loguercio, A.D.; Reis, A. Effectiveness of a desensitizing agent before in-office tooth bleaching in restored teeth, Clin. Oral Investig. 2014, 18, 839–845. [Google Scholar] [CrossRef]
- Armênio, R.V.; Fitarelli, F.; Armênio, M.F.; Demarco, F.F.; Reis, A.; Loguercio, A.D. The effect of fluoride gel use on bleaching sensitivity: A double-blind randomized controlled clinical trial. J. Am. Dent. Assoc. 2008, 139, 592–597, quiz 626-7. [Google Scholar] [CrossRef]
- Browning, W.D.; Chan, D.C.; Myers, M.L.; Brackett, W.W.; Brackett, M.G.; Pashley, D.H. Comparison of traditional and low sensitivity whiteners. Oper Dent. 2008, 33, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Rosales, J.I.; Marshall, G.W.; Marshall, S.J.; Watanabe, L.G.; Toledano, M.; Cabrerizo, M.A.; Osorio, R. Acid-etching and hydration influence on dentin roughness and wettability. J. Dent. Res. 1999, 78, 1554–1559. [Google Scholar] [CrossRef] [PubMed]
- El Feninat, F.; Elouatik, S.; Ellis, T.H.; Sacher, E.; Stangel, I. Quantitative assessment of surface roughness as measured by AFM: Application to polished human dentin. Appl. Surf. Sci. 2001, 183, 205–215. [Google Scholar] [CrossRef]
- Thurnheer, T.B.G. Effect of sodium fluoride on oral biofilm microbiota and enamel demineralization. Arch. Oral Biol. 2018, 89, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Ziglo, M.J.; Nelson, A.E.; Heo, G.; Major, P.W. Argon laser induced changes to the carbonate content of enamel. Appl. Surf. Sci. 2009, 255, 6790–6794. [Google Scholar] [CrossRef]
- Taube, F.; Ylmén, R.; Shchukarev, A.; Nietzsche, S.; Norén, J.G. Morphological and chemical characterization of tooth enamel exposed to alkaline agents. J. Dent. 2010, 38, 72–81. [Google Scholar] [CrossRef]
- Yoshida, Y.; VanMeerbeek, B.; Nakayama, Y. Evidence of chemical bonding at biomaterial-hard tissue interfaces. J. Dent. Res. 2000, 79, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Bitter, N.C. A scanning electron microscopy study of the effect of bleaching agents on enamel: A preliminary report. J. Prosthet. Dent. 1992, 67, 852–855. [Google Scholar] [CrossRef]
- Zalkind, M.; Arwaz, J.R.; Goldman, A.; Rotstein, I. Surface morphology changes in human enamel, dentin and cementum following bleaching: A scanning electron microscopy study. Endod Dent Traumatol. 1996, 12, 82–88. [Google Scholar] [CrossRef]
- Llena Puy, M.C.; Forner Navarro, L.; Ferrandez, A.; Faus Llacer, J.V. Effet de deux agents de blanchiment sur la surface de l’émail. Etude in vitro. Bull. Group. Int. Rech. Sci. Stomatol. Odontol. 1992, 35, 3–4. [Google Scholar]
- Pinto, F.; de Oliveira, R.; Cavalli, V.; Giannini, M. Peroxide bleaching agent effects on enamel surface microhardness, roughness and morphology. Pesqui. Odontol. Bras. 2004, 18, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.A.; Patel, M.P.; Hill, R.G.; Fleming, P.S. The effect of bioactive glasses on enamel remineralization: A systematic review. J. Dent. 2017, 67, 9–17. [Google Scholar] [CrossRef]
- Bakry, A.S.; Abbassy, M.A.; Alharkan, H.F.; Basuhail, S.; Al-Ghamdi, K.; Hill, R. A Novel Fluoride Containing Bioactive Glass Paste is Capable of Re-Mineralizing Early Caries Lesions. Materials 2018, 11, 1636. [Google Scholar] [CrossRef]
- Shah, F.A.; Brauer, D.S.; Hill, R.G.; Hing, K.A. Apatite formation of bioactive glasses is enhanced by low additions of fluoride but delayed in the presence of serum proteins. Mater. Lett. 2015, 153, 143–147. [Google Scholar] [CrossRef]
- Rotstein, I.; Dankner, E.; Goldman, A.; Heling, I.; Stabholz, A.; Zalkind, M. Histochemical analysis of dental hard tissues following bleaching. J. Endod. 1996, 22, 23–25. [Google Scholar] [CrossRef]
- Featherstone, J.D. The science and practice of caries prevention. J. Am. Dent. Assoc. 2000, 131, 887–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira-Junior, W.F.; Ferraz, L.N.; Pini, N.I.P.; Ambrosano, G.H.B.; Aguiar, F.H.B.; Tabchoury, C.P.M.; Lima, D.A.N.L. Effect of toothpaste use against mineral loss promoted by dental bleaching. Oper. Dent. 2018, 43, 190–200. [Google Scholar] [CrossRef] [PubMed]
Groups | Toothpaste | Treatment/Bleaching | Manufacturer | Composition |
---|---|---|---|---|
Group 1 SRP | Sensodyne Repair and Protect | Bleaching using 40% hydrogen peroxide (three times for 20 min each application) | Haleon Group of Companies, Weybridge, Surrey, UK | Glycerin, polyethylene glycols (PEG-8), Silica, Calcium Sodium Phosphosilicate (NovaMin), Sodium Lauryl Sulfate, Sodium monofluorophosphate, Aroma, Titanium Dioxide, Carbomer, Potassium, Acesulfame, Limonene, 1450 ppm Sodium Fluoride |
Group 2 BIO | BioMinF | Bleaching using 40% hydrogen peroxide (three times for 20 min each application) | BioMin, London, UK | Glycerin, Silica, PEG 400, FluorocalciumPhosphoSilicate, Sodium Lauryl Sulphate, Titanium Dioxide, aroma, Carbomer, Potassium Acesulfame, 540 ppm fluoride |
Group 3 COL | Colgate Total | Bleaching using 40% hydrogen peroxide (three times for 20 min each application) | Colgate Palmolive, Morristown, TN, USA |
Water, Hydrated Silica, Glycerin, Sorbitol, PVM/MA Copolymer, Sodium Lauryl Sulphate, Flavour, Cellulose Gum, Carrageenan, Sodium Hydroxide, 1450 ppm Sodium Fluoride, Sodium Saccharin, Triclosan, CI 77891
|
Group 4 HP | Bleaching alone | Bleaching using 40% hydrogen peroxide (three times for 20 min each application) | Opalescence Boost, South Jordan, UT 84095, USA | |
Group 5 UC | Distilled water alone | Unbleached control with no treatment | - | - |
Roughness (µm) | Group 1 (SRP) | Group 2 (BIO) | Group 3 (COL) | Group 4 (HP) | Group 5 (UC) |
---|---|---|---|---|---|
Ra | 0.06 ± 0.02 | 0.07 ± 0.03 | 0.07 ± 0.02 | 0.09 ± 0.03 | 0.05 ± 0.02 |
Rq | 0.07 ± 0.03 | 0.08 ± 0.03 | 0.09 ± 0.03 | 0.12 ± 0.04 | 0.07 ± 0.03 |
Rmax | 0.63 ± 0.30 | 0.85 ± 0.40 | 1.01 ± 0.26 | 1.2 ± 0.30 * | 0.6 ± 0.23 |
Elements | Group 1 (SRP) | Group 2 (BIO) | Group 3 (COL) | Group 4 (HP) | Group 5 (UC) |
---|---|---|---|---|---|
Si | 5.42 (±3.16) | 2.73 (±1.46) | 2.07 (±0.93) | 1.68 (±0.78) | 1.28 (±0.46) |
C | 36.52 (±3.72) | 36.17 (±8.83) | 44.6 (±9.01) | 56.46 (±12.06) | 52.56 (±7.5) |
N | 2.02 (±0.98) | 2.84 (±1.28) | 1.45 (±0.54) | 1.18 (±0.47) | 3.48 (±0.88) |
O | 36.07 (±4.31) | 34.54 (±5.54) | 29.94 (±6.32) | 25.21 (±6.71) | 27.38 (±4.4) |
F | 0.83 (±0.3) | 0.93 (±0.25) | 0.84 (±0.18) | 0.84 (±0.34) | ˂0.05 |
Na | 2.80 (±2.02) | 1.20 (±1.35) | 0.99 (±1.29) | 1.87 (±1.68) | 1.86 (±1.77) |
Mg | 0.55 (±0.2) | 0.34 (±0.17) | 0.38 (±0.17) | 0.66 (±0.31) | 0.41 (±0.16) |
Al | ˂0.05 | ˂0.05 | ˂0.05 | ˂0.05 | ˂0.05 |
Sr | 1.26 (±0.42) | 1.62 (±0.52) | 1.40 (±0.45) | 0.95 (±0.4) | 0.98 (±0.32) |
P | 5.89 (±1.59) | 7.20 (±1.95) | 5.85 (±2.06) | 4.41 (±1.63) | 4.48 (±1.33) |
Sn | ˂0.05 | 0.37 (±0.77) | 0.31 (±0.94) | 0.06 (±0.4) | 0.40 (±0.59) |
Ca | 8.20 (±2.28) | 10.49 (±3.19) | 9.66 (±2.97) | 7.69 (±2.54) | 7.33 (±1.80) |
Zn | 1.37 (±0.40) | 0.43 (±0.21) | 0.31 (±0.14) | 0.41 (±0.26) | 0.35 (±0.17) |
Elements | Group 1 (SRP) | Group 2 (BIO) | Group 3 (COL) | Group 4 (HP) | Group 5 (UC) |
---|---|---|---|---|---|
Si | 0.20 (±0.03) | 0.13 (±0.06) | 0.19 (±0.10) | 0.16 (±0.05) | 0.09 (±0.03) |
C | 14.43 (±3.52) | 12.88 (±3.81) | 11.53 (±3.67) | 19.6 (±3.76) | 21.60 (±8.52) |
N | 7.15 (±0.73) | 5.20 (±0.81) | 5.52 (±1.21) | 9.24 (±1.60) | 6.23 (±2.08) |
O | 43.95 (±5.38) | 46.45 (±7.89) | 49.26 (±7.54) | 48.52 (±5.51) | 45.79 (±6.14) |
F | 3.65 (±0.32) | 2.40 (±0.38) | 2.34 (±0.35) | 3.93 (±0.27) | 2.11 (±0.39) |
Na | 0 (±0.002) | 0 (±0.003) | 0 (±0.003) | 0 | 0 |
Mg | 0.39 (±0.19) | 0.22 (±0.17) | 0.28 (±0.20) | 0.50 (±0.11) | 0.31 (±0.17) |
Al | 0.15 (±0.11) | 0.11 (±0.08) | 0.13 (±0.09) | 0.20 (±0.06) | 0.12 (±0.11) |
Sr | 0.03 (±0.01) | 0.03 (±0.02) | 0.03 (±0.02) | 0.04 (±0.01) | 0.05 (±0.05) |
P | 11.17 (±1.86) | 11.02 (±2.16) | 10.46 (±2.30) | 6.87 (±1.51) | 8.69 (±3.31) |
Sn | 0.03 (±0.02) | 0.04 (±0.03) | 0.05 (±0.02) | 0.01 (±0.01) | 0.05 (±0.08) |
Ca | 18.73 (±4.30) | 21.45 (±6.83) | 20.08 (±7.42) | 10.88 (±3.17) | 15.39 (±6.88) |
Zn | 0.08 (±0.06) | 0.07 (±0.05) | 0.14 (±0.31) | 0.04 (±0.03) | 0.03 (±0.03) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ergucu, Z.; Yoruk, I.; Erdoğan, A.; Boyacıoğlu, H.; Hill, R.; Baysan, A. The Use of Toothpastes Containing Different Formulations of Fluoride and Bioglass on Bleached Enamel. Materials 2023, 16, 1368. https://doi.org/10.3390/ma16041368
Ergucu Z, Yoruk I, Erdoğan A, Boyacıoğlu H, Hill R, Baysan A. The Use of Toothpastes Containing Different Formulations of Fluoride and Bioglass on Bleached Enamel. Materials. 2023; 16(4):1368. https://doi.org/10.3390/ma16041368
Chicago/Turabian StyleErgucu, Zeynep, Inci Yoruk, Ayşegül Erdoğan, Hayal Boyacıoğlu, Robert Hill, and Aylin Baysan. 2023. "The Use of Toothpastes Containing Different Formulations of Fluoride and Bioglass on Bleached Enamel" Materials 16, no. 4: 1368. https://doi.org/10.3390/ma16041368
APA StyleErgucu, Z., Yoruk, I., Erdoğan, A., Boyacıoğlu, H., Hill, R., & Baysan, A. (2023). The Use of Toothpastes Containing Different Formulations of Fluoride and Bioglass on Bleached Enamel. Materials, 16(4), 1368. https://doi.org/10.3390/ma16041368