Ultrafiltration Membranes Modified with Reduced Graphene Oxide: Effect on Methyl Green Removal from Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Reagents
2.1.2. Membranes
2.2. Equipment
2.2.1. Membrane Test Module
2.2.2. Spectrophotometer
2.2.3. Variable Pressure Scanning Electron Microscopy (SEM)
2.3. Methods
2.3.1. Membranes Modification
2.3.2. Morphological Characterization of Membrane through SEM and EDX
2.3.3. Methyl Green Analysis
2.4. Physico-Chemical Characterization of the Membrane. Characteristic Parameters of the System
Anti-Fouling Test
3. Results and Discussion
3.1. Morphological Characterization of the Membranes
3.2. Physico-Chemical Characterization of the Membranes
3.2.1. Solvent Permeability
3.2.2. Methyl Green Removal
3.2.3. Fouling Study and Membrane Deterioration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, Y.; Mueller, N.D.; Siebert, S.; Jackson, R.B.; AghaKouchak, A.; Zimmerman, J.B.; Tong, D.; Hong; Davis, S.J. Flexibility and intensity of global water use. Nat. Sustain. 2019, 2, 515–523. [Google Scholar] [CrossRef]
- Doyen, W. Latest developments in ultrafiltration for large-scale drinking water applications. Desalination 1997, 1138, 165–177. [Google Scholar] [CrossRef]
- Benkhaya, S.; M’rabet, S.; Hsissou, R.; El Harfi, A. Synthesis of new low-cost organic ultrafiltration membrane made from Polysulfone/Polyetheramide blends and its application for soluble azoic dyes removal. J. Mater. Res. Technol. 2020, 9, 4763–4772. [Google Scholar]
- Taeseon, H.; Joon-Suk, O.; Woosoon, Y.; Jae-Do, N.; Chulsung, B.; Hyung-ick, K.; Kwang, J.K. Ultrafiltration using graphene oxide surface-embedded polysulfone membranes. Sep. Purif. Technol. 2016, 166, 41–47. [Google Scholar]
- Sinha, M.K.; Purkait, M.K. Preparation and characterization of stimuli-responsive hydrophilic polysulfone membrane modified with poly (N-vinylcaprolactam-co-acrylic acid). Desalination 2014, 348, 16–25. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Wee, K.H.; Bai, R. Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method. J. Membr. Sci. 2010, 362, 326–333. [Google Scholar] [CrossRef]
- Li, J.F.; Xu, Z.L.; Yang, H.; Yu, L.Y.; Liu, M. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl. Surf. Sci. 2009, 255, 4725–4732. [Google Scholar] [CrossRef]
- Han, M.J.; Nathaniel, G.; Baroña, B.; Jung, B. Effect of surface charge on hydrophilically modified poly(vinylidene fluoride) membrane for microfiltration. Desalination 2011, 270, 76–83. [Google Scholar] [CrossRef]
- Ghosh, T.; Biswas, C.; Oh, J.; Arabale, G.; Hwang, T.; Luong, N.D.; Jin, M.; Lee, Y.H.; Nam, J.D. Solution-processed graphite membrane from reassembled graphene oxide. Chem. Mater. 2012, 24, 594–599. [Google Scholar] [CrossRef]
- Hidalgo, A.M.; Gómez, M.; Murcia, M.D.; Gómez, E.; León, G.; Sánchez, A. Removal of anilinic compounds using the NF-97 membrane: Application of the solution-diffusion and SKK models. Sep. Sci. Tecnol. 2016, 51, 2429–2439. [Google Scholar] [CrossRef]
- ICSA. Thermo Evolution 300. Available online: https://www.icsa.es/tienda/analitica/thermo-evolution-300 (accessed on 15 November 2022).
- ICM. Institut de Ciènces del Mar. Microscopía Electronica. Available online: https://micro.icm.csic.es/es/site-page/hitachi-s-3500n (accessed on 15 November 2022).
- Hidalgo, A.M.; Gómez, M.; Murcia, M.D.; León, G.; Miguel, B.; Gago, I.; Martínez, P.M. Ibuprofen Removal by Graphene Oxide and Reduced Graphene Oxide Coated Polysulfone Nanofiltration Membranes. Membranes 2022, 12, 562. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Lv, S.; Hu, H.; Wu, X.; Liu, L. Enhanced performance of PVDF composite ultrafiltration membrane via degradation of collagen-modified graphene oxide. Appl. Sci. 2021, 11, 11513. [Google Scholar] [CrossRef]
- Zahid, M.; Khalid, T.; Rehan, Z.A.; Javed, T.; Akram, S.; Rasid, A.; Mustafa, S.K.; Shabbir, R.; Mora-Poblete, F.; Asad, M.S.; et al. Fabrication and characterization of sulfonated graphene oxide (SGO) doped PVDF nanocomposite membranes with improved anti-biofouling performance. Membranes 2021, 11, 749. [Google Scholar] [CrossRef]
- Yan, J.; Nie, L.; Li, G.; Zhu, Y.; Gao, M.; Wu, R.; Wang, B. Graphene oxide modified polyamide 66 ultrafiltration membranes with enhamced anti-fouling performance. Membranes 2022, 12, 458. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, W.; Gryta, M. The application of cellulose acetate membranes for separation of fermentation broths by the reverse osmosis: A feasibility study. Int. J. Mol. Sci. 2022, 23, 11738. [Google Scholar] [CrossRef] [PubMed]
- Ravishankar, H.; Christy, J.; Jegatheesan, V. Graphene Oxide (GO)-Blended Polysulfone (PSf) Ultrafiltration Membranes for Lead Ion Rejection. Membranes 2018, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Mora, T.; Hidalgo, A.M.; Ros-Berruezo, G.; López-Nicolás, R. Screening ultrafiltration membranes to separate lactose and protein from sheep whey: Application of simplified model. J. Food Sci. Technol. 2020, 57, 3193–3200. [Google Scholar] [CrossRef] [PubMed]
- Macedo, A.; Duarte, E.; Pinho, M. The role of concentration polarization in ultrafiltration of ovine cheese whey. J. Membr. Sci. 2011, 381, 34–40. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Chasiotis, S.; Botsaris, G.; Gekas, V. Separation and recovery of proteins and sugars from Halloumi cheese whey. Food Res. J. 2014, 65, 477–483. [Google Scholar] [CrossRef]
- Corbatón-Báguena, M.J.; Álvarez-Blanco, S.; Vicent-Vela, M.C. Cleaning of ultrafiltration membranes fouled with BSA by means of saline solutions. Sep. Purif. Technol. 2014, 125, 1–10. [Google Scholar] [CrossRef]
- Liang, B.; Zhang, P.; Wang, J.; Qu, J.; Wang, L.; Wang, X.; Guan, C.; Pan, K. Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification. Carbon 2016, 103, 94–100. [Google Scholar] [CrossRef]
- Xia, X.; Zhou, F.; Yu, R.; Cao, L.; Chen, L. Ultrahigh water performance of reduced graphene oxide membrane for radioactive liquid waste treatment. Membranes 2021, 11, 809. [Google Scholar] [CrossRef] [PubMed]
- Zlaoui, K.; Rhimi, A.; Ennigrou, D.J.; Naifer, K.H. Performance improvement of reduced graphene oxide blended PVDF ultrafiltration membrane. J. Desalin. Water Treat. 2021, 230, 184–192. [Google Scholar] [CrossRef]
Product Denomination | GR60PP | RC70PP | GR80PP |
---|---|---|---|
Manufacturer | Alfa Laval | Alfa Laval | Alfa Laval |
Filtration type | Ultrafiltration | Ultrafiltration | Ultrafiltration |
Molecular Weight Cut-Off (Da) | 25,000 | 10,000 | 10,000 |
Composition | Polysulphone | Regenerated cellulose acetate | Polyethersulphone |
Operating pressure range (bar) | 1–10 | 1–10 | 1–10 |
Maximum pressure (bar) | 10 | 10 | 10 |
pH range | 2–10 | 2–10 | 2–10 |
Temperature range (°C) | 5–70 | 5–70 | 5–70 |
Coefficient of Permeability to Solvent 108 (s/m) | ||
---|---|---|
Membranes | Native | RGO |
GR60PP | 6.41 | 8.41 |
GR80PP | 12.31 | 8.85 |
Coefficient of Permeability to Solvent 108 (s/m) | ||
---|---|---|
Membranes | Native | RGO |
GR60PP | 4.16 | 9.30 |
GR80PP | 11.47 | 9.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murcia, M.D.; Hidalgo, A.M.; Gómez, M.; León, G.; Gómez, E.; Martínez, M. Ultrafiltration Membranes Modified with Reduced Graphene Oxide: Effect on Methyl Green Removal from Aqueous Solution. Materials 2023, 16, 1369. https://doi.org/10.3390/ma16041369
Murcia MD, Hidalgo AM, Gómez M, León G, Gómez E, Martínez M. Ultrafiltration Membranes Modified with Reduced Graphene Oxide: Effect on Methyl Green Removal from Aqueous Solution. Materials. 2023; 16(4):1369. https://doi.org/10.3390/ma16041369
Chicago/Turabian StyleMurcia, María Dolores, Asunción M. Hidalgo, María Gómez, Gerardo León, Elisa Gómez, and Marta Martínez. 2023. "Ultrafiltration Membranes Modified with Reduced Graphene Oxide: Effect on Methyl Green Removal from Aqueous Solution" Materials 16, no. 4: 1369. https://doi.org/10.3390/ma16041369
APA StyleMurcia, M. D., Hidalgo, A. M., Gómez, M., León, G., Gómez, E., & Martínez, M. (2023). Ultrafiltration Membranes Modified with Reduced Graphene Oxide: Effect on Methyl Green Removal from Aqueous Solution. Materials, 16(4), 1369. https://doi.org/10.3390/ma16041369