Analyzing the Bolometric Performance of Vanadium Oxide Thin Films Modified by Carbon Nanotube Dispersions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Determination of Conduction Mechanism and TCR of Device A: Films
3.2. Determination of Conduction Mechanism and TCR of Device B: /CNT Composite Films
3.2.1. Analysis of the Effect of SWCNT Dispersions
3.2.2. Analysis of the Effect of MWCNT Dispersions
3.3. Noise Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Vanadium oxide | |
TCR | Temperature coefficient of resistance |
SWCNTs | Single-walled carbon nanotubes |
MWCNTs | Multi-walled carbon nanotubes |
VRH | Variable range hopping |
1D | One-dimensional |
2D | Two-dimensional |
References
- Balcerak, R.S. Uncooled infrared sensors: Rapid growth and future perspective. In Infrared Detectors and Focal Plane Arrays IV; SPIE: Bellingham, DC, USA, 2000; Volume 4028, pp. 36–39. [Google Scholar]
- Blackwell, R.; Lacroix, D.; Bach, T.; Ishii, J.; Hyl, S.; Dumas, T.; Carpenter, S.; Chan, S.; Sujlana, B. µm microbolometer FPA technology at BAE Systems. In Infrared Technology and Applications XXXV; SPIE: Bellingham, DC, USA, 2009; Volume 7298, pp. 258–263. [Google Scholar]
- Radford, W.A.; Murphy, D.F.; Ray, M.; Propst, S.H.; Kennedy, A.; Kojiro, J.K.; Woolaway, I.I.; Soch, K.L.; Coda, R.; Lung, G.; et al. 320×240 silicon microbolometer uncooled IR FPAs with on-chip offset correction. In Infrared Detectors and Focal Plane Arrays IV; SPIE: Bellingham, DC, USA, 1996; Volume 2746, pp. 82–92. [Google Scholar]
- Voshell, A.; Dhar, N.; Rana, M.M. Materials for microbolometers: Vanadium oxide or silicon derivatives. In Image Sensing Technologies: Materials, Devices, Systems, and Applications IV; SPIE: Bellingham, DC, USA, 2017; Volume 10209, pp. 92–107. [Google Scholar]
- Fieldhouse, N.; Pursel, S.M.; Carey, R.; Horn, M.W.; Bharadwaja, S.S.N. Vanadium oxide thin films for bolometric applications deposited by reactive pulsed dc sputtering. J. Vac. Sci. Technol. Vacuum Surfaces Film. 2009, 27, 951–955. [Google Scholar] [CrossRef]
- Gauntt, B.D.; Li, J.; Cabarcos, O.M.; Basantani, H.A.; Venkatasubramanian, C.; Bharadwaja, S.S.N.; Podraza, N.J.; Jackson, T.N.; Allara, D.L.; Antrazi, S.; et al. Microstructure of vanadium oxide used in microbolometers. In Infrared Technology and Applications XXXVII; SPIE: Bellingham, DC, USA, 2011; Volume 8012, pp. 1218–1224. [Google Scholar]
- Sood, A.K.; Zeller, J.W.; Philipose, U.; Syllaios, A.J.; Chaudhary, L.S.; Efstathiadis, H. Design and development of innovative vanadium oxide, CNT, and graphene based high-performance microbolometer. In Infrared Sensors, Devices, and Applications XII; SPIE: Bellingham, DC, USA, 2022; Volume 12234, pp. 101–114. [Google Scholar]
- Itkis, M.E.; Borondics, F.; Yu, A.; Haddon, R.C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 2006, 312, 413–416. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Xu, X.; Wang, M.; Sun, M.; Jiang, Y.; Yao, J.; Ao, T. Chemical structures and physical properties of vanadium oxide films modified by single-walled carbon nanotubes. Phys. Chem. Chem. Phys. 2016, 18, 1422–1428. [Google Scholar] [CrossRef]
- Yu, L.; Guo, Y.; Zhu, H.; Luo, M.; Han, P.; Ji, X. Low-cost microbolometer type infrared detectors. Micromachines 2020, 11, 800. [Google Scholar] [CrossRef] [PubMed]
- Bhan, R.K.; Saxena, R.S.; Jalwani, C.R.; Lomash, S.K. Uncooled infrared microbolometer arrays and their characterisation techniques. Def. Sci. J. 2009, 59, 580. [Google Scholar] [CrossRef]
- Chen, C.; Yi, X.; Zhang, J.; Zhao, X. Linear uncooled microbolometer array based on VOx thin films. Infrared Phys. Technol. 2001, 42, 87–90. [Google Scholar] [CrossRef]
- Syllaios, A.J.; Lopes, V.C.; Littler, C.L.; Shrestha, K. Amorphous Silicon Microbolometers for IR Imaging. In The World Scientific Reference of Amorphous Materials: Structure, Properties, Modeling and Main Applications, Volume 3—Structure, Properties, and Applications of Tetrahedrally Bonded Thin-Film Amorphous Semiconductors; World Scientific Publishing Co.: Singapore, 2021; pp. 409–440. [Google Scholar]
- Svatoš, V.; Gablech, I.; Ilic, B.R.; Pekárek, J.; Neužil, P. In situ observation of carbon nanotube layer growth on microbolometers with substrates at ambient temperature. J. Appl. Phys. 2018, 123, 114503. [Google Scholar] [CrossRef]
- Yang, Z.P.; Ci, L.; Bur, J.A.; Lin, S.Y.; Ajayan, P.M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 2008, 8, 446–451. [Google Scholar] [CrossRef]
- Lehman, J.; Sanders, A.; Hanssen, L.; Wilthan, B.; Zeng, J.; Jensen, C. Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate. Nano Lett. 2010, 10, 3261–3266. [Google Scholar] [CrossRef]
- Syllaios, A.J.; Harcrow, M.S.; Western, B.J.; Lopes, V.C.; Littler, C.L.; Gunawidjaja, R.; Yu, Z.G. Material considerations for current and next generation microbolometer technology. In Image Sensing Technologies: Materials, Devices, Systems, and Applications V; SPIE: Bellingham, DC, USA, 2018; Volume 10656, pp. 50–57. [Google Scholar]
- Mott, N.F.; Davis, E.A. Electronic Processes in Non-Crystalline Materials; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Mott, N.F. Electrons in disordered structures. Adv. Phys. 1967, 16, 49–144. [Google Scholar] [CrossRef]
- Shklovskii, B.I.; Efros, A.L. Electronic Properties of Doped Semiconductors; Springer Science & Business Media: Singapore, 2013; p. 45. [Google Scholar]
- Shklovskii, B.I.; Efros, A.L. Variable-range hopping conduction. In Electronic Properties of Doped Semiconductors; Springer: Berlin/Heidelberg, Germany, 1984; pp. 202–227. [Google Scholar]
- Rata, A.D.; Chezan, A.R.; Presura, C.; Hibma, T. Electrical properties of epitaxially grown VOx thin films. Surf. Sci. 2003, 532, 341–345. [Google Scholar] [CrossRef]
- Rata, A.D.; Chezan, A.R.; Haverkort, M.W.; Hsieh, H.H.; Lin, H.J.; Chen, C.T.; Tjeng, L.H.; Hibma, T. Growth and properties of strained VO x thin films with controlled stoichiometry. Phys. Rev. 2004, 69, 075404. [Google Scholar] [CrossRef]
- Bharadwaja, S.S.N.; Venkatasubramanian, C.; Fieldhouse, N.; Ashok, S.; Horn, M.W.; Jackson, T.N. Low temperature charge carrier hopping transport mechanism in vanadium oxide thin films grown using pulsed dc sputtering. Appl. Phys. Lett. 2009, 94, 222110. [Google Scholar] [CrossRef]
- Zabrodskii, A.G. The Coulomb gap: The view of an experimenter. Philos. Mag. B 2001, 81, 1131–1151. [Google Scholar] [CrossRef]
- Philipose, U.; Jiang, Y.; Farmer, G.; Howard, C.; Harcrow, M.; Littler, C.; Lopes, V.; Syllaios, A.J.; Sood, A.; Zeller, J.W. Using a novel approach to estimate packing density and related electrical resistance in multiwall carbon nanotube networks. Nanomaterials 2020, 10, 2350. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.; Kim, N.H.; Lee, N.R.; Chang, S.T. Meniscus-dragging deposition of single-walled carbon nanotubes for highly uniform, large-area, transparent conductors. Carbon 2014, 77, 964–972. [Google Scholar] [CrossRef]
- Hooge, F.N.; Vamme, L.K.J. Lattice scattering causes 1/ƒ noise. Phys. Lett. A 1978, 66, 315–316. [Google Scholar] [CrossRef]
- Hooge, F.N. 1/f noise sources. IEEE Trans. Electron Devices 1994, 41, 1926–1935. [Google Scholar] [CrossRef]
- Mitin, V.; Reggiani, L.; Varani, L. Generation-recombination noise in semiconductors. In Noise and Fluctuations Control in Electronic Devices; University of California: Riverside, CA, USA, 2002; pp. 11–30. [Google Scholar]
- Lee, C.D.; Tang, S.F.; Chen, T.C. Novel Performance Evaluation of Thermal Camera Based on VOx Bolometer Focal Plane Array via Analysis of Sigma NETD, Mean NETD, and Roughness Index. Sensors Mater. 2018, 30, 1283–1296. [Google Scholar]
- Wang, B.; Lai, J.; Zhao, E.; Hu, H.; Chen, S. Research on VOx uncooled infrared bolometer based on porous silicon. Front. Optoelectron. 2012, 5, 292–297. [Google Scholar] [CrossRef]
- Smith, E.M.; Panjwani, D.; Ginn, J.; Warren, A.; Long, C.; Figuieredo, P.; Smith, C.; Perlstein, J.; Walter, N.; Hirschmugl, C.; et al. Enhanced performance of VOx-based bolometer using patterned gold black absorber. In Infrared Technology and Applications XLI; SPIE: Bellingham, DC, USA, 2015; Volume 9451, pp. 402–408. [Google Scholar]
- Yeh, T.H.; Tsai, C.K.; Chu, S.Y.; Lee, H.Y.; Lee, C.T. Performance improvement of Y-doped VOx microbolometers with nanomesh antireflection layer. Opt. Express 2020, 28, 6433–6442. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Hai, V.N.; Nishioka, K.; Matsutani, A.; Tachiki, T.; Uchida, T. Evaluation of Characteristics in VO x Microbolometer Fabricated by MOD on Si3N4/SiO2 Membrane. IEEJ Trans. Fundam. Mater. 2018, 138, 471–477. [Google Scholar] [CrossRef]
- De Almeida, L.A.L.; Deep, G.S.; Lima, A.M.N.; Khrebtov, I.A.; Malyarov, V.G.; Neff, H. Modeling and performance of vanadium–oxide transition edge microbolometers. Appl. Phys. Lett. 2004, 85, 3605–3607. [Google Scholar] [CrossRef]
- Généreux, F.; Paultre, J.E.; Tremblay, B.; Provençal, F.; Alain, C. Influence of pixel geometry on the 1/f noise coefficient. In Infrared Technology and Applications XXXIX; SPIE: Bellingham, DC, USA, 2013; Volume: 8704, pp. 507–515. [Google Scholar]
Sample | Device R () | Noise at 0.1 V at 1 Hz () | TCR at 300 K (%/K) |
---|---|---|---|
VO | 7.0 M | 3.86 | |
0.30 g/cm MWCNT’s on VO film | 7.5 M | 3.76 | |
0.30 g/cm SWCNT’s on VO film | 7.4 M | 3.65 | |
1.6 g/cm MWCNT’s on VO film | 200 K | 0.29 | |
1.6 g/cm SWCNT’s on VO film | 3.86 K | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Philipose, U.; Littler, C.; Jiang, Y.; Naciri, A.; Harcrow, M.; Syllaios, A.J. Analyzing the Bolometric Performance of Vanadium Oxide Thin Films Modified by Carbon Nanotube Dispersions. Materials 2023, 16, 1534. https://doi.org/10.3390/ma16041534
Philipose U, Littler C, Jiang Y, Naciri A, Harcrow M, Syllaios AJ. Analyzing the Bolometric Performance of Vanadium Oxide Thin Films Modified by Carbon Nanotube Dispersions. Materials. 2023; 16(4):1534. https://doi.org/10.3390/ma16041534
Chicago/Turabian StylePhilipose, Usha, Chris Littler, Yan Jiang, Alia Naciri, Michael Harcrow, and A. J. Syllaios. 2023. "Analyzing the Bolometric Performance of Vanadium Oxide Thin Films Modified by Carbon Nanotube Dispersions" Materials 16, no. 4: 1534. https://doi.org/10.3390/ma16041534
APA StylePhilipose, U., Littler, C., Jiang, Y., Naciri, A., Harcrow, M., & Syllaios, A. J. (2023). Analyzing the Bolometric Performance of Vanadium Oxide Thin Films Modified by Carbon Nanotube Dispersions. Materials, 16(4), 1534. https://doi.org/10.3390/ma16041534