The Impact of Electron Phonon Scattering, Finite Size and Lateral Electric Field on Transport Properties of Topological Insulators: A First Principles Quantum Transport Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Zigzag Nanoribbons of Stanene and Bismuthene
3.1.1. Mode Space Basis
3.1.2. The Effects of Electron–Phonon Coupling
3.2. Ultra-Narrow Ribbons
3.3. Electric Field-Induced Topological Phase Transition in Xenes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045. [Google Scholar] [CrossRef] [Green Version]
- Bansil, A.; Lin, H.; Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 2016, 88, 021004. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. Carrier transport in two-dimensional topological insulator nanoribbons in the presence of vacancy defects. 2D Mater. 2019, 6, 025011. [Google Scholar] [CrossRef]
- Pezo, A.; Focassio, B.; Schleder, G.R.; Costa, M.; Lewenkopf, C.; Fazzio, A. Disorder effects of vacancies on the electronic transport properties of realistic topological insulator nanoribbons: The case of bismuthene. Phys. Rev. Mater. 2021, 5, 014204. [Google Scholar] [CrossRef]
- Konig, M.; Wiedmann, S.; Brune, C.; Roth, A.; Buhmann, H.; Molenkamp, L.W.; Qi, X.L.; Zhang, S.C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Fatemi, V.; Gibson, Q.D.; Watanabe, K.; Taniguchi, T.; Cava, R.J.; Jarillo-Herrero, P. Observation of the quantum spin Hall effect up to 100 Kelvin in a monolayer crystal. Science 2018, 359, 76–79. [Google Scholar] [CrossRef] [Green Version]
- Lima, L.R.; Lewenkopf, C. Breakdown of topological protection due to nonmagnetic edge disorder in two-dimensional materials in the quantum spin Hall phase. Phys. Rev. B 2022, 106, 245408. [Google Scholar] [CrossRef]
- Nguyen, N.M.; Cuono, G.; Islam, R.; Autieri, C.; Hyart, T.; Brzezicki, W. Unprotected edge modes in quantum spin Hall insulator candidate materials. arXiv 2022, arXiv:2209.06912. [Google Scholar] [CrossRef]
- Paul, T.; Becerra, V.F.; Hyart, T. Interplay of quantum spin Hall effect and spontaneous time-reversal symmetry breaking in electron-hole bilayers I: Transport properties. arXiv 2022, arXiv:2205.12790. [Google Scholar] [CrossRef]
- Väyrynen, J.I.; Goldstein, M.; Gefen, Y.; Glazman, L.I. Resistance of helical edges formed in a semiconductor heterostructure. Phys. Rev. B 2014, 90, 115309. [Google Scholar] [CrossRef]
- Dietl, T. Charge dopants control quantum spin Hall materials. arXiv 2022, arXiv:2206.01613. [Google Scholar]
- Vannucci, L.; Olsen, T.; Thygesen, K.S. Conductance of quantum spin Hall edge states from first principles: The critical role of magnetic impurities and inter-edge scattering. Phys. Rev. B 2020, 101, 155404. [Google Scholar] [CrossRef] [Green Version]
- Ezawa, M.; Nagaosa, N. Interference of topologically protected edge states in silicene nanoribbons. Phys. Rev. B 2013, 88, 121401. [Google Scholar] [CrossRef] [Green Version]
- Das, B.; Sen, D.; Mahapatra, S. Tuneable quantum spin Hall states in confined 1T’transition metal dichalcogenides. Sci. Rep. 2020, 10, 6670. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, M.; Zhang, C.; Culcer, D.; Hamilton, A.R.; Fuhrer, M.S.; Wang, X. Optimizing topological switching in confined 2D-Xene nanoribbons via finite-size effects. Appl. Phys. Rev. 2022, 9, 011411. [Google Scholar] [CrossRef]
- Shi, B.; Tang, H.; Song, Z.; Li, J.; Xu, L.; Liu, S.; Yang, J.; Sun, X.; Quhe, R.; Yang, J.; et al. Phase transition and topological transistors based on monolayer Na3Bi nanoribbons. Nanoscale 2021, 13, 15048–15057. [Google Scholar] [CrossRef]
- Vandenberghe, W.G.; Fischetti, M.V. Imperfect two-dimensional topological insulator field-effect transistors. Nat. Commun. 2017, 8, 14184. [Google Scholar] [CrossRef] [Green Version]
- Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S.C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater. 2017, 16, 163–169. [Google Scholar] [CrossRef]
- Qian, X.; Liu, J.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347. [Google Scholar] [CrossRef] [Green Version]
- Collins, J.L.; Tadich, A.; Wu, W.; Gomes, L.C.; Rodrigues, J.N.; Liu, C.; Hellerstedt, J.; Ryu, H.; Tang, S.; Mo, S.K.; et al. Electric-field-tuned topological phase transition in ultrathin Na3Bi. Nature 2018, 564, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Focassio, B.; Schleder, G.R.; Pezo, A.; Costa, M.; Fazzio, A. Dual topological insulator device with disorder robustness. Phys. Rev. B 2020, 102, 045414. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Y.R.; Wang, J.; Liu, J.F.; Ma, Z. Quantized field-effect tunneling between topological edge or interface states. Phys. Rev. Lett. 2019, 123, 206801. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.W.; Cohen, M.L.; Louie, S.G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349. [Google Scholar] [CrossRef] [Green Version]
- Afzalian, A.; Pourtois, G. Atomos: An atomistic modelling solver for dissipative dft transport in ultra-scaled hfs2 and black phosphorus mosfets. In Proceedings of the 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Udine, Italy, 4–6 September 2019; pp. 1–4. [Google Scholar]
- Afzalian, A. Ab initio perspective of ultra-scaled CMOS from 2d material fundamentals to dynamically doped transistors. NPJ 2D Mater. Appl. 2021, 5, 5. [Google Scholar] [CrossRef]
- Afzalian, A.; Huang, J.; Ilatikhameneh, H.; Charles, J.; Lemus, D.; Lopez, J.B.; Rubiano, S.P.; Kubis, T.; Povolotskyi, M.; Klimeck, G.; et al. Mode space tight binding model for ultra-fast simulations of III-V nanowire MOSFETs and heterojunction TFETs. In Proceedings of the 2015 International Workshop on Computational Electronics (IWCE), West Lafayette, IN, USA, 2–4 September 2015; pp. 1–3. [Google Scholar]
- Afzalian, A.; Vasen, T.; Ramvall, P.; Passlack, M. Physics and performance of III-V nanowire broken-gap heterojunction TFETs using an efficient tight-binding mode-space NEGF model enabling million-atom nanowire simulations. J. Phys. Condens. Matter 2018, 30, 254002. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.; Jeong, W.J.; Lee, J. Density functional theory based simulations of silicon nanowire field effect transistors. J. Appl. Phys. 2016, 119, 154505. [Google Scholar] [CrossRef]
- Taisuke, O. Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B 2003, 67, 155108. [Google Scholar]
- Kotaka, H.; Ishii, F.; Saito, M. Rashba effect on the structure of the Bi one-bilayer film: Fully relativistic first-principles calculation. Jpn. J. Appl. Phys. 2013, 52, 035204. [Google Scholar] [CrossRef]
- Afzalian, A.; Akhoundi, E.; Gaddemane, G.; Duflou, R.; Houssa, M. Advanced DFT–NEGF Transport Techniques for Novel 2-D Material and Device Exploration Including HfS2/WSe2 van der Waals Heterojunction TFET and WTe2/WS2 Metal/Semiconductor Contact. IEEE Trans. Electron Devices 2021, 68, 5372–5379. [Google Scholar] [CrossRef]
- Afzalian, A. Computationally efficient self-consistent born approximation treatments of phonon scattering for coupled-mode space non-equilibrium Green’s function. J. Appl. Phys. 2011, 110, 094517. [Google Scholar] [CrossRef]
- Afzalian, A.; Doornbos, G.; Shen, T.M.; Passlack, M.; Wu, J. A High-Performance InAs/GaSb Core-Shell Nanowire Line-Tunneling TFET: An Atomistic Mode-Space NEGF Study. IEEE J. Electron Dev. Soc. 2018, 7, 88–99. [Google Scholar] [CrossRef]
- Vandenberghe, W.; Massimo, V. Calculation of room temperature conductivity and mobility in tin-based topological insulator nanoribbons. J. Appl. Phys. 2014, 116, 173707. [Google Scholar] [CrossRef]
- Akhoundi, E.; Houssa, M.; Afzalian, A. The impact of electron phonon scattering on transport properties of topological insulators: A first principles quantum transport study. Solid-State Electron. 2023, 201, 108587. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhoundi, E.; Houssa, M.; Afzalian, A. The Impact of Electron Phonon Scattering, Finite Size and Lateral Electric Field on Transport Properties of Topological Insulators: A First Principles Quantum Transport Study. Materials 2023, 16, 1603. https://doi.org/10.3390/ma16041603
Akhoundi E, Houssa M, Afzalian A. The Impact of Electron Phonon Scattering, Finite Size and Lateral Electric Field on Transport Properties of Topological Insulators: A First Principles Quantum Transport Study. Materials. 2023; 16(4):1603. https://doi.org/10.3390/ma16041603
Chicago/Turabian StyleAkhoundi, Elaheh, Michel Houssa, and Aryan Afzalian. 2023. "The Impact of Electron Phonon Scattering, Finite Size and Lateral Electric Field on Transport Properties of Topological Insulators: A First Principles Quantum Transport Study" Materials 16, no. 4: 1603. https://doi.org/10.3390/ma16041603
APA StyleAkhoundi, E., Houssa, M., & Afzalian, A. (2023). The Impact of Electron Phonon Scattering, Finite Size and Lateral Electric Field on Transport Properties of Topological Insulators: A First Principles Quantum Transport Study. Materials, 16(4), 1603. https://doi.org/10.3390/ma16041603