Formation of TiB2–MgAl2O4 Composites by SHS Metallurgy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Combustion Exothermicity of Reduction-Based SHS Reactions
3.2. Combustion Temperature and Self-Propagating Velocity
3.3. Composition and Microstructure Analyses of Synthesized Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilkins, J.M.L. Boron and Refractory Borides; Matkovich, V.I., Ed.; Springer: New York, NY, USA, 1977; p. 633. [Google Scholar]
- Balcı, Ö.; Burkhardt, U.; Schmidt, M.; Hennicke, J.; Yağcı, M.B.; Somer, M. Densification, microstructure and properties of TiB2 ceramics fabricated by spark plasma sintering. Mater. Charact. 2018, 145, 435–443. [Google Scholar] [CrossRef]
- Ramesh, B.; Showman, E.; Abraar, S.A.M.; Saxena, K.K.; Tharwan, M.Y.; Alsaadi, N.; Al Sofyani, S.; Elsheikh, A.H. Microstructure, mechanical characteristics, and wear performance of spark plasma sintered TiB2–Si3N4 as affected by B4N doping. Materials 2022, 15, 7096. [Google Scholar] [CrossRef] [PubMed]
- Munro, R.G. Material properties of titanium diboride. J. Res. Natl. Inst. Stand. Technol. 2000, 105, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Vaferi, K.; Nekahi, S.; Vajdi, M.; Moghanlou, F.S.; Shokouhimehr, M.; Motallebzadeh, A.; Sha, J.; Asl, M.S. Heat transfer, thermal stress and failure analyses in a TiB2 gas turbine stator blade. Ceram. Int. 2019, 45, 19331–19339. [Google Scholar] [CrossRef]
- Sulima, I.; Hyjek, P.; Podsiadło, M.; Boczkal, S. Effect of zirconium diboride and titanium diboride on the structure and properties of 316L steel-based composites. Materials 2023, 16, 439. [Google Scholar] [CrossRef]
- Popov, A.Y.; Sivak, A.A.; Borodianska, H.Y.; Shabalin, I.L. High toughness TiB2–Al2O3 composite ceramics produced by reactive hot pressing with fusible components. Adv. Appl. Ceram. 2015, 114, 178–182. [Google Scholar] [CrossRef]
- Kozień, D.; Czekaj, I.; Gancarz, P.; Ziąbka, M.; Wieczorek, W.; Pasiut, K.; Zientara, D.; Pędzich, Z. Ceramic matrix composites obtained by the reactive sintering of boron carbide with intermetallic compounds from the Ti-Si system. Materials 2022, 15, 8657. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Q.; Jiao, B.; Wang, Q.; Zhang, H.; Jia, Q.; Zhang, S.; Liu, J. Direct laser powder-bed fusion additive manufacturing of complex-shaped TiB2-B4C composite with ultra-fine eutectic microstructure and outstanding mechanical performances. J. Eur. Ceram. Soc. 2023, 43, 1230–1236. [Google Scholar] [CrossRef]
- Radishevskaya, N.; Lepakova, O.; Karakchieva, N.; Nazarova, A.; Afanasiev, N.; Godymchuk, A.; Gusev, A. Self-propagating high temperature synthesis of TiB2–MgAl2O4 composites. Metals 2017, 7, 295. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, X.; Gong, W.; Wang, T.; Wang, X.; Gong, R. Temperature-insensitive and enhanced microwave absorption of TiB2/Al2O3/MgAl2O4 composites: Design, fabrication, and characterization. J. Alloys Compd. 2022, 894, 162144. [Google Scholar] [CrossRef]
- Ganesh, I. A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications. Int. Mater. Rev. 2013, 58, 63–112. [Google Scholar] [CrossRef]
- Corlett, C.A.; Frontzek, M.D.; Obradovic, N.; Watts, J.L.; Fahrenholtz, W.G. Mechanical activation and cation site disorder in MgAl2O4. Materials 2022, 15, 6422. [Google Scholar] [CrossRef]
- Yuan, L.; Tian, C.; Yan, X.; He, X.; Liu, Z.; Wen, T.; Jin, E.; Yu, J. Preparation of porous MgAl2O4 ceramics by a novel pectin gel-casting process. J. Aust. Ceram. Soc. 2021, 57, 1049–1055. [Google Scholar] [CrossRef]
- Yeh, C.L.; Chen, M.C.; Shieh, T.H. Formation of silicide/spinel ceramic composites via Al- and Mg-based thermitic combustion synthesis. J. Aust. Ceram. Soc. 2022, 58, 1275–1282. [Google Scholar] [CrossRef]
- Levashov, E.A.; Mukasyan, A.S.; Rogachev, A.S.; Shtansky, D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 2017, 62, 203–239. [Google Scholar] [CrossRef]
- Xu, J.; Ma, P.; Zou, B.; Yang, X. Reaction behavior and formation mechanism of ZrB2 and ZrC from the Ni-Zr-B4C system during self-propagating high-temperature synthesis. Materials 2023, 16, 354. [Google Scholar] [CrossRef]
- Zakaryan, M.K.; Zurnachyan, A.R.; Amirkhanyan, N.H.; Kirakosyan, H.V.; Antonov, M.; Rodriguez, M.A.; Aydinyan, S.V. Novel pathway for the combustion synthesis and consolidation of boron carbide. Materials 2022, 15, 5042. [Google Scholar] [CrossRef]
- Omran, J.G.; Afarani, M.S.; Sharifitabar, M. Fast synthesis of MgAl2O4–W and MgAl2O4–W–W2B composite powders by self-propagating high-temperature synthesis reactions. Ceram. Int. 2018, 44, 6508–6513. [Google Scholar] [CrossRef]
- Zaki, Z.I.; Mostafa, N.Y.; Rashad, M.M. High pressure synthesis of magnesium aluminate composites with MoSi2 and Mo5Si3 in a self-sustaining manner. Ceram. Int. 2012, 38, 5231–5237. [Google Scholar] [CrossRef]
- Zaki, Z.I.; Ahmed, Y.M.Z.; Abdel-Gawad, S.R. In-situ synthesis of porous magnesia spinel/TiB2 composite by combustion technique. J. Ceram. Soc. Jpn. 2009, 117, 719–723. [Google Scholar] [CrossRef]
- Liang, Y.H.; Wang, H.Y.; Yang, Y.F.; Zhao, R.Y.; Jiang, Q.C. Effect of Cu content on the reaction behaviors of self-propagating high-temperature synthesis in Cu-Ti-B4C system. J. Alloys Compd. 2008, 462, 113–118. [Google Scholar] [CrossRef]
- Binnewies, M.; Milke, E. Thermochemical Data of Elements and Compounds; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002. [Google Scholar]
- Yeh, C.L.; Lin, J.Z. Combustion synthesis of Cr-Al and Cr-Si intermetallics with Al2O3 additions from Cr2O3-Al and Cr2O3-Al-Si reaction systems. Intermetallics 2013, 33, 126–133. [Google Scholar] [CrossRef]
- Wang, L.L.; Munir, Z.A.; Maximov, Y.M. Thermite reactions: Their utilization in the synthesis and processing of materials. J. Mater. Sci. 1993, 28, 3693–3708. [Google Scholar] [CrossRef]
- Singh, J.; Bahel, S. Synthesis of single phase MgTiO3 and influence of Sn4+ substitution on its structural, dielectric and electrical properties. J. Alloys. Compd. 2020, 816, 152679. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, P.; Qu, S.X.; Cheng, L.; Zhang, H. Microwave dielectric properties of Mg2TiO4 ceramics synthesized via high energy ball milling method. J. Alloys. Compd. 2015, 623, 238–242. [Google Scholar] [CrossRef]
- Naghizadeh, R.; Rezaie, H.R.; Golestani-Fard, F. Effect of TiO2 on phase evolution and microstructure of MgAl2O4 spinel in different atmospheres. Ceram. Int. 2011, 37, 349–354. [Google Scholar] [CrossRef]
- Jo, H.J.; Kim, J.S.; Kim, E.S. Microwave dielectric properties of MgTiO3-based ceramics. Ceram. Int. 2015, 41, S530–S536. [Google Scholar] [CrossRef]
- Thatikonda, S.K.; Goswami, D.; Dobbidi, P. Effects of CeO2 nanoparticles and annealing temperature on the microwave dielectric properties of MgTiO3 ceramics. Ceram. Int. 2014, 40, 1125–1131. [Google Scholar] [CrossRef]
- Li, Y.; Nan, L.; Ruan, G.; Li, X. Reaction path in the aluminothermic reduction nitridation reaction to synthesize MgAl2O4/TiN composite. Ceram. Int. 2005, 31, 825–829. [Google Scholar] [CrossRef]
- Liu, X.; Li, K.; Bao, K.; Chen, J.; Zhang, H.; Zhang, S. In-situ synthesis of magnesium aluminate spinel–Zirconium diboride composite powder in magnesium chloride melt. Ceram. Int. 2022, 48, 11869–11871. [Google Scholar] [CrossRef]
- Ma, L.; Yu, J.; Guo, X.; Xie, B.; Gong, H.; Zhang, Y.; Zhaie, Y.; Wu, X. Preparation and sintering of ultrafine TiB2 powders. Ceram. Int. 2018, 44, 4491–4495. [Google Scholar] [CrossRef]
- Sarkar, R. Additives for magnesium aluminate spinel: A review. Interceram Refract. Manual 2011, 1, 28–32. [Google Scholar]
- Lushchik, A.; Feldbach, E.; Kotomin, E.A.; Kudryavtseva, I.; Kuzovkov, V.N.; Popov, A.I.; Seeman, V.; Shablonin, E. Distinctive features of diffusion-controlled radiation defect recombination in stoichiometric magnesium aluminate spinel single crystals and transparent polycrystalline ceramics. Sci. Rep. 2020, 10, 7810. [Google Scholar] [CrossRef] [PubMed]
- Ananchenko, D.V.; Nikiforov, S.V.; Kuzovkov, V.N.; Popov, A.I.; Ramazanova, G.R.; Batalov, R.I.; Bayazitovc, R.M.; Novikov, H.A. Radiation-induced defects in sapphire single crystals irradiated by a pulsed ion beam. Nucl. Instrum. Methods Phys. Res. B 2020, 466, 1–7. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, C.-L.; Zheng, F.-Y. Formation of TiB2–MgAl2O4 Composites by SHS Metallurgy. Materials 2023, 16, 1615. https://doi.org/10.3390/ma16041615
Yeh C-L, Zheng F-Y. Formation of TiB2–MgAl2O4 Composites by SHS Metallurgy. Materials. 2023; 16(4):1615. https://doi.org/10.3390/ma16041615
Chicago/Turabian StyleYeh, Chun-Liang, and Fu-You Zheng. 2023. "Formation of TiB2–MgAl2O4 Composites by SHS Metallurgy" Materials 16, no. 4: 1615. https://doi.org/10.3390/ma16041615
APA StyleYeh, C. -L., & Zheng, F. -Y. (2023). Formation of TiB2–MgAl2O4 Composites by SHS Metallurgy. Materials, 16(4), 1615. https://doi.org/10.3390/ma16041615