Processing of Haynes® 282® Alloy by Direct Energy Deposition with Arc and Wire
Abstract
:1. Introduction
2. Experimental Setup
2.1. Filler Metal
2.2. Setup for WAAM
3. Test Methods
4. Results
4.1. Process Parameters and Arc Energy
4.2. Cooling Times Depended on Process Parameters
4.3. Non-Destructive Testing and Chemical Analysis
4.4. Macrostructure
- -
- Z-ArHeHC: six hot cracks, 1080 µm total crack length, 2.50 µm/mm2 MSI
- -
- R1-ArHeH: two hot cracks, 390 µm total crack length, 1.05 µm/mm2 MSI
- -
- Z-ArHeNC: no hot cracks.
4.5. Mechanical Properties at Room Temperature
4.6. Precipitation Hardening
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DIN EN ISO/ASTM 52900:2022-03: Additive manufacturing-General Principles-Fundamentals and Vocabulary; Beuth Verlag: GmbH, Berlin, 2022. [CrossRef]
- Uriondo, A.; Esperon-Miguez, M.; Perinpanayagam, S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proc. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2015, 229, 2132–2147. [Google Scholar] [CrossRef]
- Mouritz, A.P. Introduction to Aerospace Materials; Mouritz, A.P., Ed.; Woodhead Publishing: Sawston, UK, 2012; pp. 1–14. [Google Scholar] [CrossRef]
- Reed, R.C. The Superalloys: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Pike, L.M. Development of a Fabricable Gamma Prime (γ’) Strengthened Superalloy. Superalloys 2008, 2008, 191–200. [Google Scholar] [CrossRef]
- Kruger, K.L. 15—HAYNES 282 alloy, Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants; Di Gianfrancesco, A., Ed.; Woodhead, Publishing: Sawston, UK, 2017; pp. 511–545. [Google Scholar] [CrossRef]
- Jacobsson, J.; Andersson, J.; Brederholm, A.; Hänninen, H. Weldability of Ni-Based Superalloys Waspaloy® and Haynes® 282®: A Study Performed with Varestraint Testing. Res. Rev. J. Mater. Sci. 2016, 4, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Osoba, L.O. A Study on Laser Weldability Improvement of Newly Developed Haynes 282 Superalloy. Doctoral Thesis, University of Manitoba (Canada), Winnipeg, MB, Canada, 2012. [Google Scholar]
- Caron., J.L. Weldability and welding metallurgy of HAYNES 282 alloy. In Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives, Pittsburgh, PA, USA, 28 September–1 October 2014; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Hanning, F.; Andersson, J. Weldability of wrought Haynes® 282® repair welded using manual gas tungsten arc welding. Weld. World 2018, 62, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Caron, J.; Pike, L. Weldability of HAYNES 282 superalloy after long-term thermal exposure. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2014; Volume 14, p. 13003. [Google Scholar] [CrossRef]
- White, H.; Santella, M.; Specht, E.D. Weldability of HAYNES 282 alloy for new fabrications and after service exposure. Energy Mater. 2009, 4, 84–91. [Google Scholar] [CrossRef]
- Otto, R.; Brøtan, V.; Carvalho, P.A.; Reiersen, M.; Graff, J.S.; Sunding, M.F.; Berg, O.; Diplas, S.; Azar, A.S. Roadmap for additive manufacturing of HAYNES® 282® superalloy by laser beam powder bed fusion (PBF-LB) technology. Mater. Des. 2021, 204, 109656. [Google Scholar] [CrossRef]
- Unocic, K.; Kirka, M.; Cakmak, E.; Greeley, D.; Okello, A.; Dryepondt, S. Evaluation of additive electron beam melting of Haynes 282 alloy. Mater. Sci. Eng. A 2020, 772, 138607. [Google Scholar] [CrossRef]
- Lim, B.; Chen, H.; Nomoto, K.; Chen, Z.; Saville, A.I.; Vogel, S.; Clarke, A.J.; Paradowska, A.; Reid, M.; Primig, S.; et al. Additively manufactured Haynes-282 monoliths containing thin wall struts of varying thicknesses. Addit. Manuf. 2022, 59, 103120. [Google Scholar] [CrossRef]
- Shaikh, A.S.; Schulz, F.; Minet-Lallemand, K.; Hryha, E. Microstructure and mechanical properties of Haynes 282 superalloy produced by laser powder bed fusion. Mater. Today Commun. 2021, 26, 102038. [Google Scholar] [CrossRef]
- Magnin, C.; Islam, Z.; Elbakhshwan, M.; Brittan, A.; Thoma, D.J.; Anderson, M.H. The performance of additively manufactured Haynes 282 in supercritical CO2. Mater. Sci. Eng. A 2022, 841, 143007. [Google Scholar] [CrossRef]
- Ramakrishnan, A.; Dinda, G.P. Microstructure and mechanical properties of direct laser metal deposited Haynes 282 superalloy. Mater. Sci. Eng. A 2019, 748, 347–356. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; De Vecchis, R.R.; Xiong, W. Evolution of carbide precipitates in Haynes® 282 superalloy processed by wire arc additive manufacturing. J. Mater. Process. Technol. 2022, 305, 117597. [Google Scholar] [CrossRef]
- Xiong, W.; To, A. Wire Arc Additive Manufacturing of Advanced Steam Cycle Components Using Location Specific Design Enhanced by High-Throughput Experiments and Machine Learning; Physical Metallurgy and Materials Design Laboratory, University of Pittsburgh: Pittsburgh, PA, USA, 2020. Available online: https://netl.doe.gov/sites/default/files/netl-file/22FERD_HPM11_Xiong.pdf (accessed on 28 November 2022).
- Selvi, S.; Vishvaksenan, A.; Rajasekar, E. Cold metal transfer (CMT) technology—An overview. Def. Technol. 2018, 14, 28–44. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, X.C.; Chuanchu, S. Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing. Surf. Coatings Technol. 2019, 374, 116–123. [Google Scholar] [CrossRef]
- Kindermann, R.M.; Roy, M.; Morana, R.; Prangnell, P.B. Process response of Inconel 718 to wire + arc additive manufacturing with cold metal transfer. Mater. Des. 2020, 195, 109031. [Google Scholar] [CrossRef]
- Xu, X.; Ding, J.; Ganguly, S.; Williams, S. Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire + arc additive manufacture process. J. Mater. Process. Technol. 2019, 265, 201–209. [Google Scholar] [CrossRef]
- Zinke, M.; Burger, S.; Juettner, S. Properties of Additively Manufactured Deposits of Alloy 718 Using CMT Process De-pending on Wire Batch and Shielding Gas; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Caron, J.L.; Sowards, J.W. 6.09—Weldability of Nickel-Base Alloys; Hashmi, S., Batalha, G.F., Van Tyne, J.C., Yilbas, B., Eds.; Comprehensive Materials Processing; Elsevier: Amsterdam, The Netherlands, 2014; pp. 151–179. [Google Scholar] [CrossRef]
- Jurić, I.; Garašić, I.; Bušić, M.; Kožuh, Z. Influence of Shielding Gas Composition on Structure and Mechanical Properties of Wire and Arc Additive Manufactured Inconel 625. JOM 2018, 71, 703–708. [Google Scholar] [CrossRef]
- Agarwal, D.C.; Brill, U. High-temperature-strength nickel alloy. Adv. Mater. Process. 2000, 158, 31–34. [Google Scholar]
- Herold, H.; Zinke, M.; Hübner, A. Investigations on the use of nitrogen shielding gas in welding and its influence on the hot crack behaviour of high-temperature resistant fully austenitic Ni- and Fe-base alloys. Weld. World 2005, 49, 50–63. [Google Scholar] [CrossRef]
- Cutler, E.; Wasson, A.; Fuchs, G. Effect of minor alloying additions on the carbide morphology in a single crystal Ni-base superalloy. Scr. Mater. 2008, 58, 146–149. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Y.; Liu, Y.; Hu, Z. Effect of small amount of nitrogen on carbide characteristics in unidirectional Ni-base superalloy. Met. Mater. Trans. A 1997, 28, 2143–2147. [Google Scholar] [CrossRef]
- Nabavi, B.; Massoud, G. Nitrogen Effect on the Microstructure and Mechanical Properties of Nickel Alloys in Alloy 263 and Alloy. Weld. J. 2015, 94, 53–60. Available online: https://app.aws.org/wj/supplement/WJ_2015_02_s53.pdf (accessed on 28 November 2022).
- Technical Datasheet AWS 062 Rev.1 HAYNES® 282 of Alloy Wire International Ltd. Available online: https://www.alloywire.com/wp-content/uploads/2021/04/AW_Datasheet_HAYNES-282.pdf (accessed on 28 December 2022).
- Wittig, B.; Zinke, M.; Jüttner, S.; Keil, D. Experimental simulation of dissimilar weld metal of high manganese steels by arc melting technique. Weld. World 2017, 61, 249–256. [Google Scholar] [CrossRef]
- ISO 14175:2008; Welding Consumables—Gases and Gas Mixtures for Fusion Welding and Allied Processes. Beuth Verlag: GmbH, Berlin, 2008. [CrossRef]
- ISO 17636-1:2013; Non-Destructive Testing of Welds—Radiographic Testing—Part 1: X- and Gamma-ray Techniques with Film. Beuth Verlag: GmbH, Berlin, 2013. [CrossRef]
- ISO 6892-1:2019; Metallic Materials. Tensile Testing. Method of Test at Room Temperature. Beuth Verlag: GmbH, Berlin, 2019. [CrossRef]
- DIN 50125:2016-12; Testing of Metallic Materials—Tensile Test Pieces. Beuth Verlag: GmbH, Berlin, 2016. [CrossRef]
- ISO 6507-1:2018; Metallic Materials. Vickers Hardness Test. Test Method. Beuth Verlag: GmbH, Berlin, 2018. [CrossRef]
- ISO 6892-2:2018; Metallic Materials—Tensile Testing—Part 2: Method of Test at Elevated Temperature. Beuth Verlag: GmbH, Berlin, 2018. [CrossRef]
- Technical Datasheet HAYNES® 282® ALLOY: A New, Wrought, Age-Hardenable, Nickel Superalloy Designed for Improved Creep Strength, Weldability, and Fabricability. Available online: http://www.haynes.ch/doc/haynes/282_h3173.pdf (accessed on 28 December 2022).
- Hongfei, Y.; Yimi, G.; Yuefen, G. Effects of post-welding heat treatment on microstructure and mechanical properties of welding joint of new Ni-Fe based superalloy with Haynes 282 filler metal. Mater. Sci. Eng. A 2017, 708, 118–128. [Google Scholar] [CrossRef]
Analysis | Φ, ″ | C | Si | Mn | S | Cr | Fe | Mo | Co | Al | Ti | B | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Target | - | 0.04–0.08 | ≤0.15 | ≤0.3 | ≤0.015 | 18.5–20.5 | ≤1.5 | 8–9 | 9–11 | 1.38–1.65 | 1.9–2.3 | 0.003–0.010 | bal. |
Actual | 0.040 | 0.065 | 0.05 | 0.05 | 0.0006 | 19.23 | 0.99 | 8.15 | 10.05 | 1.59 | 2.20 | 0.0039 | 57.45 |
0.035 | 0.065 | 0.05 | 0.05 | 0.0006 | 19.23 | 0.99 | 8.16 | 10.10 | 1.59 | 2.26 | 0.0040 | 57.32 |
Step | Criterion | Φ (″) | CMT | Shielding Gas | Setting Values (m/min) | Structure | Dimensions (mm) | |||
---|---|---|---|---|---|---|---|---|---|---|
Reference No. | (acc. to [35]) | WFS | TS | L | H | W | ||||
1. | Arc energy | 0.040 | 1254 V2.3.8.4 | Z-ArHeHC 30/2/0.05 | 8.0; 11.0; 14.0 | 0.4; 0.6; 0.8 | wall | 225 | 65 | variable |
Structure | 0.040 | 1254 V2.3.8.4 | Z-ArHeHC 30/2/0.05 | 11.0 | 0.6 | block | 330 | 32 | 55 | |
2. | Shielding gas | 0.035 | 960 V1.0.0.3.4 | Z-ArHeHC 30/2/0.05 R1-ArHeH30/1 | 12.5 | 0.4 | wall | 180 | 60 | variable |
block | 220 | 27 | 30 | |||||||
1699 V4.5.0 | Z-ArHeNC 5/5/0.05 | 12.5 | 0.55 | wall | 180 | 60 | variable | |||
block | 220 | 28 | 35 |
Process Parameter | Wall | Block | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Setting | m/min | 8.0 | 8.0 | 8.0 | 11.0 | 11.0 | 11.0 | 14.0 | 14.0 | 14.0 | 11.0 | |
m/min | 0.4 | 0.6 | 0.8 | 0.4 | 0.6 | 0.8 | 0.4 | 0.6 | 0.8 | 0.6 | ||
Measured | m/min | 6.5 ± 0.2 | 7.1 ± 0.5 | 7.4 ± 0.3 | 9.3 ± 0.3 | 10.5 ± 0.4 | 11.0 ± 0.4 | 13.9 ± 0.4 | 14.2 ± 0.2 | 14.1 ± 0.2 | 10.7 ± 0.5 | |
A | 117 ± 3.4 | 124 ± 4.2 | 127 ± 3.1 | 145 ± 3.5 | 153 ± 6.5 | 152 ± 8.6 | 181 ± 5.6 | 188 ± 7.4 | 188 ± 7.8 | 159 ± 8.2 | ||
V | 17.3 ± 0.9 | 19.6 ± 2.0 | 19.8 ± 2.2 | 20.9 ± 0.8 | 21.2 ± 1.6 | 22.0 ± 2.5 | 23.1 ± 0.7 | 23.8 ± 1.0 | 24.0 ± 1.2 | 20.6 ± 2.0 | ||
J/mm | 303 ± 12 | 242 ± 28 | 189 ± 21 | 455 ± 17 | 323 ± 20 | 249 ± 24 | 625 ± 25 | 447 ± 16 | 338 ± 13 | 327 ± 27 |
Shielding Gas | Synergic Line | Structure | Setting Values | Measured Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ar | He | H2 | N2 | CO2 | Short Name | DR | |||||||
Bal. | 30 | 2 | - | 0.055 | CMT 960 ArHeHC | wall | 12.5 | 0.40 | 10.0 ± 0.3 | 114 ± 1.8 | 18.0 ± 0.4 | 309 ± 11 | 3.1 |
block | 12.5 | 0.40 | 11.0 ± 1.0 | 118 ± 1.7 | 18.2 ± 1.4 | 321 ± 27 | 3.4 | ||||||
Bal. | 30 | 1 | - | - | CMT 960 ArHeH | wall | 12.5 | 0.40 | 11.7 ± 0.7 | 115 ± 1.1 | 19.3 ± 0.7 | 333 ± 12 | 3.6 |
block | 12.5 | 0.40 | 11.1 ± 1.1 | 118 ± 1.7 | 18.6 ± 1.3 | 322 ± 23 | 3.4 | ||||||
Bal. | 5 | - | 5 | 0.055 | CMT 1699 ArHeNC | wall | 12.5 | 0.55 | 14.1 ± 0.3 | 151 ± 3.2 | 21.5 ± 04 | 356 ± 8.9 | 4.4 |
block | 12.5 | 0.55 | 13.5 ± 0.9 | 152 ± 2.6 | 20.4 ± 1.1 | 339 ± 14 | 4.1 |
Symbol | Unit | Wall | Block | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
WFS | m/min | 8.0 | 8.0 | 8.0 | 11.0 | 11.0 | 11.0 | 14.0 | 14.0 | 14.0 | 11.0 |
TS | m/min | 0.4 | 0.6 | 0.8 | 0.4 | 0.6 | 0.8 | 0.4 | 0.6 | 0.8 | 0.6 |
UTS | MPa | 832 ± 4 | 807 ± 26 | 833 ± 5 | 810 ± 3 | 851 ± 49 | 802 ± 12 | 849 ± 26 | 840 ± 12 | 821 ± 9 | 879 ± 10 |
0.2% YS | MPa | 540 ± 3 | 514 ± 15 | 528 ± 2 | 523 ± 22 | 563 ± 24 | 525 ± 8 | 549 ± 8 | 567 ± 14 | 558 ± 5 | 594 ± 29 |
A | % | 40.1 ± 2.5 | 42.3 ± 1.1 | 44.2 ± 0.5 | 41.6 ± 1.6 | 43.8 ± 0.7 | 43.6 ± 1.1 | 41.8 ± 1.2 | 39.7 ± 2.4 | 37.7 ± 5.1 | 43.8 ± 1.7 |
Hardness | HV10 | 267 ± 9 | 264 ± 9 | 267 ± 9 | 261 ± 7 | 276 ± 11 | 268 ± 8 | 263 ± 11 | 267 ± 9 | 277 ± 13 | 271 ± 13 |
Structure | Parameter | Unit | ArHeHC | ArHeH | ArHeNC |
---|---|---|---|---|---|
wall | UTS | MPa | 810 ± 30 | 796 ± 25 | 799 ± 16 |
0.2% YS | MPa | 516 ± 13 | 517 ± 22 | 527 ± 19 | |
A | % | 46.0 ± 1.8 | 44.0 ± 5.0 | 31.1 ± 4.1 | |
Hardness | HV10 | 276 ± 16 | 265 ± 8 | 293 ± 13 | |
block | KV2 at RT | J | 144 ± 4 | 142 ± 3 | 133 ± 9 |
KV2 at −196 °C | J | 133 ± 7 | 129 ± 1 | 126 ± 0 | |
Hardness | HV10 | 278 ± 18 | 270 ± 14 | 296 ± 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinke, M.; Burger, S.; Jüttner, S. Processing of Haynes® 282® Alloy by Direct Energy Deposition with Arc and Wire. Materials 2023, 16, 1715. https://doi.org/10.3390/ma16041715
Zinke M, Burger S, Jüttner S. Processing of Haynes® 282® Alloy by Direct Energy Deposition with Arc and Wire. Materials. 2023; 16(4):1715. https://doi.org/10.3390/ma16041715
Chicago/Turabian StyleZinke, Manuela, Stefan Burger, and Sven Jüttner. 2023. "Processing of Haynes® 282® Alloy by Direct Energy Deposition with Arc and Wire" Materials 16, no. 4: 1715. https://doi.org/10.3390/ma16041715
APA StyleZinke, M., Burger, S., & Jüttner, S. (2023). Processing of Haynes® 282® Alloy by Direct Energy Deposition with Arc and Wire. Materials, 16(4), 1715. https://doi.org/10.3390/ma16041715