Recent Advances on 3D-Printed Zirconia-Based Dental Materials: A Review
Abstract
:1. Introduction
1.1. Vat Photopolymerization
- ▪
- Stereolithography (SLA)
- ▪
- Direct light processing (DLP)
1.2. Robocasting (RC)
1.3. Material Jetting (MJ)
1.4. Binder Jetting (BJ)
2. Materials and Methods
2.1. Protocol
2.2. Eligibility Criteria
- -
- Studies that include zirconia based materials;
- -
- Studies that use additive manufacturing techniques/3D printing technologies;
- -
- Studies that evaluate the properties of the printed materials;
- -
- Studies that focus on materials used for dental applications;
- -
- Articles published in English;
- -
- Articles published in peer-reviewed journals;
- -
- In vitro studies.
2.3. Information Sources and Search Strategy
2.4. Data Extraction and Results Achievement
3. Results
4. Discussion
4.1. Cure Depth
4.2. Density and Mechanical Properties
4.3. Defects
4.4. Aesthetic Features
4.5. Dimensional Accuracy and Resolution
4.6. Bonding Strength between Materials
4.7. Tribological Behavior
4.8. Printing Orientation
4.9. Ageing
- −
- The characteristics of the raw materials used (including the ceramic powders and the resins), such as their concentrations, the solids content, the size distribution and shape of the particles, that determine the rheological properties of the suspension;
- −
- The printing parameters (e.g., velocity, layer height/line width, orientation, nozzle/light source characteristics);
- −
- The post-printing treatments (e.g., debinding and sintering thermocycles) and the surface finishing;
- −
- The experimental procedure used for specimen characterization.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Branco, A.; Silva, R.; Santos, T.; Jorge, H.; Rodrigues, A.; Fernandes, R.; Bandarra, S.; Barahona, I.; Matos, A.; Lorenz, K.; et al. Suitability of 3D printed pieces of nanocrystalline zirconia for dental applications. Dent. Mater. 2020, 36, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Branco, A.C.; Colaço, R.; Figueiredo-Pina, C.G.; Serro, A.P. A state-of-the-art review on the wear of the occlusal surfaces of natural teeth and prosthetic crowns. Materials 2020, 13, 3525. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, J.; Taira, Y.; Sawase, T. In vitro wear of four ceramic materials and human enamel on enamel antagonist. Eur. J. Oral Sci. 2016, 124, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo-Pina, C.; Monteiro, A.; Guedes, M.; Maurício, A.; Serro, A.; Ramalho, A.; Santos, C. Effect of feldspar porcelain coating upon the wear behavior of zirconia dental crowns. Wear 2013, 297, 872–877. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Si, W.; Feng, H.; Tao, Y.; Ma, Z. Friction and wear behaviors of dental ceramics against natural tooth enamel. J. Eur. Ceram. Soc. 2012, 32, 2599–2606. [Google Scholar] [CrossRef]
- Hamed, M.T.; Abdullah Mously, H.; Khalid Alamoudi, S.; Hossam Hashem, A.B.; Hussein Naguib, G. A systematic review of screw versus cement-retained fixed implant supported reconstructions. Clin. Cosmet. Investig. Dent. 2020, 12, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Hebel, K.S.; Gajjar, R.C. Cement-retained versus screw-retained implant restorations: Achieving optimal occlusion and esthetics in implant dentistry. J. Prosthet. Dent. 1997, 77, 28–35. [Google Scholar] [CrossRef]
- Cosola, S.; Toti, P.; Babetto, E.; Covani, U.; Peñarrocha-Diago, M.; Peñarrocha-Oltra, D. In-vitro fatigue and fracture performance of three different ferrulized implant connections used in fixed prosthesis. J. Dent. Sci. 2021, 16, 397–403. [Google Scholar] [CrossRef]
- Serbena, F.C.; Mathias, I.; Foerster, C.E.; Zanotto, E.D. Crystallization toughening of a model glass-ceramic. Acta Mater 2015, 86, 216–228. [Google Scholar] [CrossRef]
- Fu, L.; Engqvist, H.; Xia, W. Glass-Ceramics in Dentistry: A Review. Materials 2020, 13, E1049. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.L.; Silva, F.S.; Nascimento, R.M.; Motta, F.V.; Souza, J.C.; Henriques, B. On the mechanical properties and microstructure of zirconia-reinforced feldspar-based porcelain. Ceram. Int. 2016, 42, 14214–14221. [Google Scholar] [CrossRef]
- Elsaka, S.E.; Elnaghy, A.M. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent. Mater. 2016, 32, 908–914. [Google Scholar] [CrossRef]
- Gómez, J.; Rueda, A.; Henao, E.A.O. Improving the mechanical properties of commercial feldspathic dental porcelain by addition of Alumina-Zirconia. Rev. Fac. Ing. 2020, 67–76. [Google Scholar] [CrossRef]
- Santos, R.; Buciumeanu, M.; Silva, F.; Souza, J.; Nascimento, R.; Motta, F.; Henriques, B. Tribological behavior of zirconia-reinforced glass–ceramic composites in artificial saliva. Tribol. Int. 2016, 103, 379–387. [Google Scholar] [CrossRef]
- Santos, R.; Buciumeanu, M.; Silva, F.; Souza, J.; Nascimento, R.; Motta, F.; Carvalho, O.; Henriques, B. Tribological behaviour of glass-ceramics reinforced by Yttria Stabilized Zirconia. Tribol. Int. 2016, 102, 361–370. [Google Scholar] [CrossRef]
- Branco, A.; Santos, T.; Polido, M.; Colaço, R.; Serro, A.; Figueiredo-Pina, C. Wear of zirconia/leucite glass-ceramics composites: A chewing simulator study. Ceram. Int. 2022, 48, 4604–4613. [Google Scholar] [CrossRef]
- Dearnley, P.A. A review of metallic, ceramic and surface-treated metals used for bearing surfaces in human joint replacements. J. Eng. Med. 1999, 213, 107–135. [Google Scholar] [CrossRef]
- Camposilvan, E.; Marro, F.G.; Mestra, A.; Anglada, M. Enhanced reliability of yttria-stabilized zirconia for dental applications. Acta. Biomater. 2015, 17, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Denry, I.; Holloway, J.A. Ceramics for Dental Applications: A Review. Materials 2010, 3, 351–368. [Google Scholar] [CrossRef] [Green Version]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef]
- Denry, I.; Kelly, J.R. State of the art of zirconia for dental applications. Dent. Mater. 2008, 24, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Juntavee, N.; Dangsuwan, C. Role of coefficient of thermal expansion on bond strength of ceramic veneered yttrium-stabilized zirconia. J. Clin. Exp. Dent. 2018, 10, e279–e286. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Pinhata-Baptista, O.H.; Ayres, A.P.; da Silva, R.L.B.; Lima, J.F.; Urbano, G.S.; No-Cortes, J.; Vasques, M.T.; Cortes, A.R.G. Comparison among 3D-Printing Technologies to Produce Dental Models. Appl. Sci. 2022, 12, 8425. [Google Scholar] [CrossRef]
- Galante, R.; Figueiredo-Pina, C.G.; Serro, A.P. Additive manufacturing of ceramics for dental applications: A review. Dent. Mater. 2019, 35, 825–846. [Google Scholar] [CrossRef]
- Abualsaud, R.; Alalawi, H. Fit, Precision, and Trueness of 3D-Printed Zirconia Crowns compared to Milled Counterparts. Dent. J. 2022, 10, 215. [Google Scholar] [CrossRef]
- Chavez, L.A.; Ibave, P.; Wilburn, B.; Iv, D.A.; Stewart, C.; Wicker, R.; Lin, Y. The influence of printing parameters, post-processing, and testing conditions on the properties of binder jetting additive manufactured functional ceramics. Ceramics 2020, 3, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Khanlar, L.N.; Rios, A.S.; Tahmaseb, A.; Zandinejad, A. Additive manufacturing of zirconia ceramic and its application in clinical dentistry: A review. Dent. J. 2021, 9, 104. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Shi, J. Additive manufacturing of zirconia ceramics: A state-of-the-art review. J. Mater. Res. Technol. 2020, 9, 9029–9048. [Google Scholar] [CrossRef]
- Revilla-León, M.; Meyer, M.J.; Zandinejad, A.; Özcan, M. Additive manufacturing technologies for processing zirconia in dental applications. Int. J. Comput. Dent. 2020, 23, 27–37. [Google Scholar]
- Cai, J.-W.; Zhang, B.-C.; Zhang, M.-H.; Wen, Y.-J.; Qu, X.-H. Indirect 3D printed ceramic: A literature review. J. Cent. South Univ. 2021, 28, 983–1002. [Google Scholar] [CrossRef]
- Kadry, H.; Wadnap, S.; Xu, C.; Ahsan, F. Digital light processing (DLP)3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur. J. Pharm. Sci. 2019, 135, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Pinargote, N.; Smirnov, A.; Peretyagin, N.; Seleznev, A.; Peretyagin, P. Direct ink writing technology (3d printing) of graphene-based ceramic nanocomposites: A review. Nanomaterials 2020, 10, 1300. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, Y.; Zhao, M.; Bosiakov, S.; Li, L. A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering. Polymers 2022, 14, 2117. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015 statement. Syst. Rev. 2015, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Revilla-León, M.; Husain, N.A.-H.; Ceballos, L.; Özcan, M. Flexural strength and Weibull characteristics of stereolithography additive manufactured versus milled zirconia. J. Prosthet. Dent. 2021, 125, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Revilla-León, M.; Husain, N.A.; Barmak, A.B.; Pérez-López, J.; Raigrodski, A.J.; Özcan, M. Chemical Composition and Flexural Strength Discrepancies Between Milled and Lithography-Based Additively Manufactured Zirconia. J. Prosthodont. 2022, 31, 778–783. [Google Scholar] [CrossRef]
- Zandinejad, A.; Revilla-León, M.; Methani, M.M.; Khanlar, L.N.; Morton, D. The fracture resistance of additively manufactured monolithic zirconia vs. Bi-layered alumina toughened zirconia crowns when cemented to zirconia abutments. Evaluating the potential of 3d printing of ceramic crowns: An in vitro study. Dent. J. 2021, 9, 115. [Google Scholar] [CrossRef] [PubMed]
- Zandinejad, A.; Das, O.; Barmak, A.B.; Kuttolamadom, M.; Revilla-León, M.; Dds, M.A.Z.; Barmak, M.A.B.; Dds, M.M.R.-L. The Flexural Strength and Flexural Modulus of Stereolithography Additively Manufactured Zirconia with Different Porosities. J. Prosthodont. 2022, 31, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.-P.; Hsu, H.-J.; Lee, S.-Y. Development of mask-less projection slurry stereolithography for the fabrication of zirconia dental coping. Int. J. Precis. Eng. Manuf. 2014, 15, 2413–2419. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Jiang, C.-P. Development of a three-dimensional slurry printing system using dynamic mask projection for fabricating zirconia dental implants. Mater. Manuf. Process 2015, 30, 1498–1504. [Google Scholar] [CrossRef]
- Osman, R.B.; van der Veen, A.J.; Huiberts, D.; Wismeijer, D.; Alharbi, N. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs. J. Mech. Behav. Biomed. Mater. 2017, 75, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.-J.; Kang, J.-H.; Fisher, J.G.; Park, S.-W. Effect of the volume fraction of zirconia suspensions on the microstructure and physical properties of products produced by additive manufacturing. Dent. Mater. 2019, 35, e97–e106. [Google Scholar] [CrossRef]
- Li, X.; Zhong, H.; Zhang, J.; Duan, Y.; Li, J.; Jiang, D. Fabrication of zirconia all-ceramic crown via DLP-based stereolithography. Int. J. Appl. Ceram. Technol. 2020, 17, 844–853. [Google Scholar] [CrossRef]
- Wu, H.; Liu, W.; Lin, L.; Li, L.; Li, Y.; Tian, Z.; Zhao, Z.; Ji, X.; Xie, Z.; Wu, S. Preparation of alumina-toughened zirconia via 3D printing and liquid precursor infiltration: Manipulation of the microstructure, the mechanical properties and the low temperature aging behavior. J. Mater. Sci. 2019, 54, 7447–7459. [Google Scholar] [CrossRef]
- Lian, Q.; Wu, X.; Li, D.; He, X.; Meng, J.; Liu, X.; Jin, Z. Accurate printing of a zirconia molar crown bridge using three-part auxiliary supports and ceramic mask projection stereolithography. Ceram. Int. 2019, 45, 18814–18822. [Google Scholar] [CrossRef]
- Hsu, H.-J.; Lee, S.-Y.; Jiang, C.-P.; Lin, R. A comparison of the marginal fit and mechanical properties of a zirconia dental crown using CAM and 3DSP. Rapid Prototyp. J. 2019, 25, 1187–1197. [Google Scholar] [CrossRef]
- Marsico, C.; Øilo, M.; Kutsch, J.; Kauf, M.; Arola, D. Vat polymerization-printed partially stabilized zirconia: Mechanical properties, reliability and structural defects. Addit. Manuf. 2020, 36, 101450. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Maeng, W.-Y.; Koh, Y.-H.; Kim, H.-E. Digital light processing of zirconia prostheses with high strength and translucency for dental applications. Ceram. Int. 2020, 46, 28211–28218. [Google Scholar] [CrossRef]
- Lu, Y.; Mei, Z.; Zhang, J.; Gao, S.; Yang, X.; Dong, B.; Yue, L.; Yu, H. Flexural strength and Weibull analysis of Y-TZP fabricated by stereolithographic additive manufacturing and subtractive manufacturing. J. Eur. Ceram. Soc. 2020, 40, 826–834. [Google Scholar] [CrossRef]
- Lerner, H.; Nagy, K.; Pranno, N.; Zarone, F.; Admakin, O.; Mangano, F. Trueness and precision of 3D-printed versus milled monolithic zirconia crowns: An in vitro study. J. Dent. 2021, 113, 103792. [Google Scholar] [CrossRef]
- Coppola, B.; Lacondemine, T.; Tardivat, C.; Montanaro, L.; Palmero, P. Designing alumina-zirconia composites by DLP-based stereolithography: Microstructural tailoring and mechanical performances. Ceram. Int. 2021, 47, 13457–13468. [Google Scholar] [CrossRef]
- Mei, Z.; Lu, Y.; Lou, Y.; Yu, P.; Sun, M.; Tan, X.; Zhang, J.; Yue, L.; Yu, H. Determination of Hardness and Fracture Toughness of Y-TZP Manufactured by Digital Light Processing through the Indentation Technique. Biomed. Res. Int. 2021, 2021, 6612840. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, P.; Dong, P.; Zeng, Y.; Chen, J. Investigation on 3D printing ZrO2 implant abutment and its fatigue performance simulation. Ceram. Int. 2021, 47, 1053–1062. [Google Scholar] [CrossRef]
- Tan, X.; Zhao, Y.; Lu, Y.; Yu, P.; Mei, Z.; Yu, H. Physical and biological implications of accelerated aging on stereolithographic additive-manufactured zirconia for dental implant abutment. J. Prosthodont. Res. 2021, 66, 600–609. [Google Scholar] [CrossRef]
- Moon, J.-M.; Jeong, C.-S.; Lee, H.-J.; Bae, J.-M.; Choi, E.-J.; Kim, S.-T.; Park, Y.-B.; Oh, S.-H. A Comparative Study of Additive and Subtractive Manufacturing Techniques for a Zirconia Dental Product: An Analysis of the Manufacturing Accuracy and the Bond Strength of Porcelain to Zirconia. Materials 2022, 15, 5398. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Lian, Q.; Xi, S.; Yi, Y.; Lu, Y.; Wu, G. Crown fit and dimensional accuracy of zirconia fixed crowns based on the digital light processing technology. Ceram. Int. 2022, 48, 17852–17863. [Google Scholar] [CrossRef]
- Coppola, B.; Schmitt, J.; Lacondemine, T.; Tardivat, C.; Montanaro, L.; Palmero, P. Digital light processing stereolithography of zirconia ceramics: Slurry elaboration and orientation-reliant mechanical properties. J. Eur. Ceram. Soc. 2022, 42, 2974–2982. [Google Scholar] [CrossRef]
- Gatto, M.L.; Groppo, R.; Furlani, M.; Giuliani, A.; Mangano, C.; Mangano, F. Lithography-based Ceramic Manufacturing (LCM) versus Milled Zirconia Blocks under uniaxial compressive loading: An in vitro comparative study. J. Dent. 2022, 116, 103886. [Google Scholar] [CrossRef]
- Jang, J.-G.; Kang, J.-H.; Joe, K.-B.; Sakthiabirami, K.; Jang, K.-J.; Jun, M.-J.; Oh, G.-J.; Park, C.; Park, S.-W. Evaluation of Physical Properties of Zirconia Suspension with Added Silane Coupling Agent for Additive Manufacturing Processes. Materials 2022, 15, 1337. [Google Scholar] [CrossRef]
- Lian, Q.; Sui, W.; Wu, X.; Yang, F.; Yang, S. Additive manufacturing of ZrO2 ceramic dental bridges by stereolithography. Rapid Prototyp. J. 2018, 24, 114–119. [Google Scholar] [CrossRef]
- Li, H.; Song, L.; Sun, J.; Ma, J.; Shen, Z. Dental ceramic prostheses by stereolithography-based additive manufacturing: Potentials and challenges. Adv. Appl. Ceram. 2019, 118, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yu, H.; Liu, Y.; Jiang, X.; Gao, B. Trueness analysis of zirconia crowns fabricated with 3-dimensional printing. J Prosthet. Dent. 2019, 121, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, Y.; Hu, M.; Wang, Y.; Xv, Y.; Liu, Y.; Sun, Y. Strength and Adaptation of Stereolithography-Fabricated Zirconia Dental Crowns: An In Vitro Study. Int. J. Prosthodont. 2019, 32, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Nakai, H.; Inokoshi, M.; Nozaki, K.; Komatsu, K.; Kamijo, S.; Liu, H.; Shimizubata, M.; Minakuchi, S.; Van Meerbeek, B.; Vleugels, J.; et al. Additively manufactured zirconia for dental applications. Materials 2021, 14, 3694. [Google Scholar] [CrossRef]
- Xiang, D.; Xu, Y.; Bai, W.; Lin, H. Dental zirconia fabricated by stereolithography: Accuracy, translucency and mechanical properties in different build orientations. Ceram. Int. 2021, 47, 28837–28847. [Google Scholar] [CrossRef]
- Li, R.; Chen, H.; Wang, Y.; Sun, Y. Performance of stereolithography and milling in fabricating monolithic zirconia crowns with different finish line designs. J. Mech. Behav. Biomed. Mater. 2021, 115, 104255. [Google Scholar] [CrossRef]
- Chen, F.; Wu, Y.-R.; Wu, J.-M.; Zhu, H.; Chen, S.; Hua, S.-B.; He, Z.-X.; Liu, C.-Y.; Xiao, J.; Shi, Y.-S. Preparation and characterization of ZrO2-Al2O3 bioceramics by stereolithography technology for dental restorations. Addit. Manuf. 2021, 44, 102055. [Google Scholar] [CrossRef]
- Silva, N.R.; Witek, L.; Coelho, P.G.; Thompson, V.P.; Rekow, E.D.; Smay, J. Additive CAD/CAM process for dental prostheses. J. Prosthodont. 2011, 20, 93–96. [Google Scholar] [CrossRef]
- Rodrigues, I.; Guedes, M.; Olhero, S.; Chefdor, A.; Branco, A.; Leite, M.; Serro, A.; Figueiredo-Pina, C. Development of free binder zirconia-based pastes for the production of dental pieces by robocasting. J. Manuf. Process. 2020, 57, 1–9. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, Z.; Liu, Q.; Kuliiev, R.; Orlovskaya, N.; Wu, D. Extrusion-based additive manufacturing of yttria-partially-stabilized zirconia ceramics. Ceram. Int. 2020, 46, 5020–5027. [Google Scholar] [CrossRef]
- Branco, A.; Silva, R.; Jorge, H.; Santos, T.; Lorenz, K.; Polido, M.; Colaço, R.; Serro, A.; Figueiredo-Pina, C. Tribological performance of the pair human teeth vs 3D printed zirconia: An in vitro chewing simulation study. J. Mech. Behav. Biomed. Mater. 2020, 110, 103900. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Baltazar, J.; Alves, M.F.; Olhero, S.M. Development of translucent zirconia by robocasting. Mater. Lett. 2022, 325, 132785. [Google Scholar] [CrossRef]
- Özkol, E.; Zhang, W.; Ebert, J.; Telle, R. Potentials of the “ Direct inkjet printing” method for manufacturing 3Y-TZP based dental restorations. J. Eur. Ceram. Soc. 2012, 32, 2193–2201. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, W. 3D inkjet printing of the zirconia ceramic implanted teeth. Mater. Lett. 2020, 261, 127131. [Google Scholar] [CrossRef]
- Fayazfar, H.; Liravi, F.; Ali, U.; Toyserkani, E. Additive manufacturing of high loading concentration zirconia using high-speed drop-on-demand material jetting. Int. J. Adv. Manuf. Technol. 2020, 109, 2733–2746. [Google Scholar] [CrossRef]
- Willems, E.; Turon-Vinas, M.; dos Santos, B.C.; Van Hooreweder, B.; Zhang, F.; Van Meerbeek, B.; Vleugels, J. Additive manufacturing of zirconia ceramics by material jetting. J. Eur. Ceram. Soc. 2021, 41, 5292–5306. [Google Scholar] [CrossRef]
- Zhai, Z.; Sun, J. Research on the low-temperature degradation of dental zirconia ceramics fabricated by stereolithography. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Han, J.-S.; Yoon, H.-I. Evaluation of intaglio surface trueness, wear, and fracture resistance of zirconia crown under simulated mastication: A comparative analysis between subtractive and additive manufacturing. J. Adv. Prosthodont. 2022, 14, 122–132. [Google Scholar] [CrossRef]
- Lüchtenborg, J.; Willems, E.; Zhang, F.; Wesemann, C.; Weiss, F.; Nold, J.; Sun, J.; Sandra, F.; Bai, J.; Reveron, H.; et al. Accuracy of additively manufactured zirconia four-unit fixed dental prostheses fabricated by stereolithography, digital light processing and material jetting compared with subtractive manufacturing. Dent. Mater. 2022, 38, 1459–1469. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, J.-M.; Zheng, G.; Lin, H.; Bai, W.; Zhao, J.; Shen, Z. Fatigue behaviours of the zirconia dental restorations prepared by two manufacturing methods. Adv. Appl. Ceram. 2017, 116, 368–375. [Google Scholar] [CrossRef]
- Turkyilmaz, I.; Wilkins, G.N. 3D printing in dentistry—Exploring the new horizons. J. Dent. Sci. 2021, 16, 1037–1038. [Google Scholar] [CrossRef]
- Tsolakis, I.A.; Papaioannou, W.; Papadopoulou, E.; Dalampira, M.; Tsolakis, A.I. Comparison in Terms of Accuracy between DLP and LCD Printing Technology for Dental Model Printing. Dent. J. 2022, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Emir, F.; Ayyildiz, S. Accuracy evaluation of complete-arch models manufactured by three different 3D printing technologies: A three-dimensional analysis. J. Prosthodont. Res. 2021, 65, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Shaukat, U.; Rossegger, E.; Schlögl, S. A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers 2022, 14, 244. [Google Scholar] [CrossRef] [PubMed]
- Bahati, D.; Bricha, M.; El Mabrouk, K. Vat Photopolymerization Additive Manufacturing Technology for Bone Tissue Engineering Applications. Adv. Eng. Mater. 2022. [Google Scholar] [CrossRef]
- Kang, J.-H.; Sakthiabirami, K.; Kim, H.-A.; Toopghara, S.A.H.; Jun, M.-J.; Lim, H.-P.; Park, C.; Yun, K.-D.; Park, S.-W. Effects of UV Absorber on Zirconia Fabricated with Digital Light Processing Additive Manufacturing. Materials 2022, 15, 8726. [Google Scholar] [CrossRef]
- Komissarenko, D.A.; Sokolov, P.S.; Evstigneeva, A.D.; Shmeleva, I.A.; Dosovitsky, A.E. Rheological and curing behavior of acrylate-based suspensions for the DLP 3D printing of complex zirconia parts. Materials 2018, 11, 2350. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Jambhulkar, S.; Zhu, Y.; Ravichandran, D.; Kakarla, M.; Vernon, B.; Lott, D.G.; Cornella, J.L.; Shefi, O.; Miquelard-Garnier, G.; et al. 3D printing for polymer/particle-based processing: A review. Compos. B Eng. 2021, 223, 109102. [Google Scholar] [CrossRef]
- Xu, W.; Jambhulkar, S.; Zhu, Y.; Ravichandran, D.; Kakarla, M.; Vernon, B.; Lott, D.G.; Cornella, J.L.; Shefi, O.; Miquelard-Garnier, G.; et al. The 3D Printing Behavior of Photocurable Ceramic/Polymer Composite Slurries Prepared with Different Particle Sizes. Nanomaterials 2022, 12, 2631. [Google Scholar] [CrossRef]
- Varghese, G.; Moral, M.; Castro-García, M.; López-López, J.J.; Marín-Rueda, J.R.; Yagüe-Alcaraz, V.; Hernández-Afonso, L.; Ruiz-Morales, J.C.; Canales-Vázquez, J. Fabrication and characterisation of ceramics via low-cost DLP 3D printing. Bol. Soc. Esp. Ceram. Vidr. 2018, 57, 9–18. [Google Scholar] [CrossRef]
- Ni, R.; Qian, B.; Liu, C.; Liu, X.; Qiu, J. A cross-linking strategy with moderated pre-polymerization of resin for stereolithography. RSC Adv. 2018, 8, 29583–29588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangsatchatham, S.; Juntavee, N. Flexural strength of various types of computerized machinable ceramic veneered to yttria stabilized tetragonal zirconia polycrystalline ceramic upon different hybridized techniques. Clin. Cosmet. Investig. Dent. 2019, 11, 61–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kontonasaki, E.; Giasimakopoulos, P.; Rigos, A.E. Strength and aging resistance of monolithic zirconia: An update to current knowledge. Jpn. Dent. Sci. Rev. 2020, 56, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Jo, M.J.; Han, S.W.; Yu, S.; Park, H. Polyimide aerogel with controlled porosity: Solvent-induced synergistic pore development during solvent exchange process. Polymer 2020, 205, 122879. [Google Scholar] [CrossRef]
- Nulty, A. A comparison of trueness and precision of 12 3D printers used in dentistry. BDJ Open 2022, 8, 1–9. [Google Scholar] [CrossRef]
Reference | Manufacturing Technology | Ceramic Material | Dental Application | Studied Properties | Main Results |
---|---|---|---|---|---|
[39] | Maskless Projection Slurry Stereolithography (MPSS) (correspondent to Digital Light Processing (DLP)) | 3Y-TZP (EZU3YA-1, EE-Tec) | Copings | Shrinkage, density, microstructure, hardness, flexural strength | Shrinkage of 23.5% and relative density of 98% TD. No signs of delamination and cracks. Hardness of 1328 HV. Flexural strength of 539 MPa. |
[40] | Three-Dimensional Slurry Printing (3DSP) (correspondent to Digital Light Processing (DLP)) | 3Y-TZP (EZU3YA-1, EE-Tec) | Implants | Shrinkage, density, microstructure, hardness, flexural strength | Shrinkage ≈ 32% and relative density of 98.2% TD. No evidence of delamination and cracks. Hardness of 1556 HV. Flexural strength of 542 MPa. |
[41] | Digital Light Processing (DLP) (ADMAFLEX 2.0; ADMATEC) | 3Y-TZP (TZ-3YS-E, Tosoh Inc.) | Implants | Density, microstructure, surface roughness, flexural strength | Relative density of 99.8% TD. Cracks, micro-porosities and interconnected pores (196 nm to 3.3 µm). Surface roughness (Ra 1.59 ± 0.41 µm) within the range of those reported for titanium implant (1.0–2.0 µm). Flexure strength depended on the printing orientation:
|
[42] | Digital Light Processing (DLP) (Octave Light R1, Octave Light) | 3Y-TZP (48–58 vol%) (TZ-3Y, Tosoh) | Not specified | Density, cure depth, microstructure, flexural strength | Maximum ZrO2 vol% possible for printing: 58 vol%. Relative density increased with the increase in vol% ZrO2 (83.02–92.79%TD). Cure depth decreased as ZrO2 vol% increased. Cracks on the surfaces increased as ZrO2 vol% decreased. Flexural strength increased as ZrO2 vol% increased (max of 674.74 ± 32.35 MPa for 58 vol%). |
[43] | Digital Light Processing (DLP) (ADMAFLEX 130, ADMATEC Europe BV) | 3Y-TZP (40 vol%) (G3Y-020OO, Shandong Sinocera Functional Material) | Crowns | Microstructure, hardness | Particles evenly distributed in the cured resin matrix without obvious agglomeration. Interlayered structure disappeared after binder burnout. Hardness of 1038 HV. |
[44] | Digital Light Processing (DLP) | ATZ (38.5 vol% ZrO2) (HWYA, Guang Dong Huawang Zirconium Materials) | Implants | Density, hardness, fracture toughness, ageing rate, phase transformation | Relative density of 98.11%TD. Hardness of 1290 HV. Fracture toughness of 6.42 MPa.m1/2 ATZ samples showed lower aging rate and phase transformation depth than 3Y-TZP. |
[45] | Mask Projection Stereolithography (MPSL) (correspondent to Digital Light Processing (DLP)) | YSZ (40 vol%) | Crowns | Density, flexural strength | Relative density of 99.3% TD. Flexural strength of 541 MPa. |
[46] | Three-Dimensional Slurry Printing (3DSP) (correspondent to Digital Light Processing (DLP)) Subtractive Manufacturing (SM) (CORiTEC 245i) | 3DSP: YSZ (75 wt%–34.5 vol%) SM: YSZ (Copran Zr-i Monolith A3—Zirkonblank, Whitepeak Dental solution) | Crowns | Marginal adaptation, hardness, flexural strength | Marginal adaptation for 3DSP samples higher (98.9 µm) than for SM samples (72 µm), being both less than the threshold value (≤120 µm) Hardness for SM samples higher (1238.8 HV) than for 3DSP samples (1189.4 HV). 3DSP samples’ flexural strength of 716.76 MPa. |
[47] | Digital Light Processing (DLP) | 5Y-PSZ | Not specified | Density, hardness, fracture toughness, flexural strength, microstructure | Relative density of 99.3% TD. Samples printed in different orientations (0°, 45° and 90°):
|
[48] | Digital Light Processing (DLP) | 4Y-PSZ (50 vol%) (Zpex4, Tosoh) | Crowns | Density, microstructure, flexural strength | Relative density of 99.4% TD. No visible interfaces between the layers. Flexural strength of 831 MPa. |
[49] | Digital Light processing (DLP) (QuickDemos Company) Subtractive Manufacturing (SM) (Wieland Zenostar mini, Ivoclar Vivadent) | DLP: Y-TZP (58 vol.%) (QuickDemos Company) SM: Y-TZP (Zenostar, Ivoclar Vivadent) | Not specified | Density, microstructure, fracture toughness, flexural strength | DLP samples’ relative density of 99% TD. Both materials with similar microstructures considering grain size, phase composition, and defects. DLP samples’ fracture toughness of 5.4 ± 0.5 MPa.m1/2 Flexural strengths of 737.4 ± 99.5 MPa (DLP) and 984 ± 94.7 MPa (SM). |
[50] | Digital Light Processing (DLP) (Cerafab S65®, Lithoz) Subtractive manufacturing (SM) (DWX-52D®, DGShape, Roland Company) | DLP: 3-TZP (LithaCon 3Y 230 D; Lithoz) SM: LithaCon 3Y 210® (Lithoz) | Crowns | Trueness, precision | SM crowns had higher trueness than DLP crowns. DLP and SM groups presented similar precision (quality of interproximal contact points and marginal closure). |
[51] | Digital Light Processing (DLP) (ADMAFLEX 130, ADMATEC Europe BV) | Alumina-zirconia (AZ) composites (15, 50, 85 vol% ZrO2) with 40 vol%: α-alumina (AdmaPrint A130) 3Y-TZP (AdmaPrint Z130) | Not specified | Microstructure, hardness, flexural strength, elastic modulus | Homogeneous microstructure with good second-phase particles distribution. Hardness of 1530–2141 HV (values decrease with the increasing zirconia content). Flexural strength of 415–843 MPa. Elastic modulus of 188–318 GPa. |
[52] | Digital Light Processing (DLP) (Ceramatrix, QuickDemos Company) Subtractive Manufacturing (SM) (Wieland Zenostar mini, Ivoclar Vivadent) | DLP: Y-TZP (58 vol%) (QuickDemos Company) SM: Y-TZP (Ivoclar Vivadent) | Not specified | Density, microstructure, hardness, fracture toughness | Relative density of 99% TD (both for DLP and SM samples). SLA and SM samples presented similar grain size and crystalline phase composition. Hardness of DLP samples lower (1189 HV) than for SM samples (1248 HV). Fracture toughness similar for DLP (3.43 ± 0.29 MPa.m1/2) and SM samples (3.44 ± 0.23 MPa.m1/2). |
[53] | Digital Light Processing (DLP) | 5Y-PSZ (78 wt%–38.5% vol%) | Implant abutment | Density, hardness, flexural strength | Relative density of 99.48% TD. Hardness of 1542 HV. Flexural strength of the sample printed in the horizontal direction (597 MPa) was better than that in the vertical direction (89 MPa). |
[54] | Digital Light Processing (DLP) (CeraLab-P60, QuickDemos Company) Subtractive Manufacturing (SM) (Wieland Zenostar mini, Ivoclar Vivadent) | DLP: 3Y-TZP (58 vol%) (QuickDemos Company) SM: 3Y-TZP (Ivoclar Vivadent AG) | Implant abutment | Effect of accelerated aging on physical and biological properties | DLP samples showed higher initial cubic phase content and rate of phase transformation than the SM samples. Aging did not affect cellular behavior in any zirconia type, except for minor changes in adhesive cell numbers recorded in an aging time/culturing time-dependent manner. Both zirconia showed comparable biological performance before and after aging. |
[55] | Digital Light Processing (DLP) (INNI-II) Subtractive Manufacturing (SM) (5X-500L) | DLP: ZrO2 (INNI-Cera, AON, Gunpo) SM: ZrO2 (Luxen Zirconia 1200 Zr, Dentalmax) | Copings | Shrinkage, accuracy, bond strength | DLP led to higher thermal shrinkage and lowest accuracy than SM samples. DLP led to higher bond strength (35.12 ± 4.09 MPa) than SM samples (30.26 ± 5.20 MPa). All samples showed typical adhesive failure mode, showing debonding between the porcelain and zirconia. |
[56] | Digital Light Processing (DLP) | 3Y-TZP (40 vol%) (JA-TZP-3Y; Jin’ao) | Crowns | Dimensional accuracy | DLP crowns presented internal fit and marginal adaptation close to clinical standards (239.3 ± 7.9 µm and 128.1 ± 7.1 µm, respectively). SM crowns led to more suitable values for clinical application: 68.5 ± 3.9 µm for internal fit and 71.6 ± 2.8 µm for marginal adaptation. |
[57] | Digital Light Processing (DLP) (ADMAFLEX 130, ADMATEC Europe BV) | 3Y-TZP (40.5 vol% and 43.6 vol%) (CY3Z, Saint-Gobain ZirPro) | Implants | Density, microstructure, flexural strength, elastic modulus, hardness | Relative density of 99.2%TD, regardless of solid loading and printing direction. Homogeneous and defect-free cross section. Flexural strength influenced by printing direction and zirconia vol%:
|
[58] | Digital Light Processing (DLP) (Cerafab S65®, Lithoz) Subtractive Manufacturing (SM) (DWX-52D®, DGShape, Roland Company) | DLP: 3Y-TZP (LithaCon 3Y 210®, Lithoz) SM: 3Y-TZP (Cerafab S65®, Lithoz) | Not specified | Microstructure, deformation under compression | DLP surface presented small surface pores (≈3 μm). Some DLP samples reached failure, whereas all the SM samples did not reach failure at the limit of the load cell (1200 MPa). DLP samples showed lower tendency to deformation under compression (11.9 ± 0.1%) than SM samples (13.5 ± 0.5%). |
[59] | Digital Light Processing (DLP) (Octave Light R1, Octave Light) | 3Y-TZP (52, 54, 56 vol%) (TZ-3Y, Tosoh) | Not specified | Density, strength, hardness | Density increased with the ZrO2 vol% (94.89 ± 0.35, 95.65 ± 0.67, 96.15 ± 0.59% TD, for 52, 54, and 56 vol%, respectively). The addition of silane coupling agent to the suspension of 56 vol% led to higher strength and hardness (5–6%) compared to those without silane coupling agent. |
Reference | Manufacturing Technology | Ceramic Material | Dental Application | Studied Properties | Main Results |
---|---|---|---|---|---|
[60] | Stereolithography (SLA) (SPS450B, Shaanxi Hengtong Intelligent Machine) | 3Y-TZP (40 vol%) (Shanghai Chigong) | Bridges | Density, surface roughness, hardness, flexural strength | Relative density of 98.58% TD. Surface roughness of 2.06 µm. Hardness of 1398 HV. Flexural strength of 200.14 MPa. |
[61] | Stereolithography (SLA) | 3Y-TZP | Bridges and implants | Microstructure | Cracks on the outer surface, with a certain propagation orientation. Pores with 200–400 nm distributed all over the surface. |
[62] | Stereolithography (SLA) (CERAMAKER 900; 3DCeram) Subtractive Manufacturing (SM) (DWX-50; Roland DG Corp) | SLA: ZrO2 (3DMIXZrO2L; 3DCeram) SM: ZrO2 (Zenostar; Wieland Dental) | Crowns | Trueness | The trueness of the external surface, intaglio surface, marginal area, and occlusal surface of SLA crowns was similar to that of SM crowns. |
[63] | Stereolithography (SLA) (CSL150; PORIMY) | ZrO2 (45 Vol%) | Crowns | Accuracy, flexural strength | Internal fit and marginal adaptation not ideal for clinical application: cement space of 63.4 µm in the occlusal area, 135.1 µm in the axial area, and 169.6 µm in the marginal area. Flexural strength of 812 ± 128 MPa. |
[35] | Stereolithography (SLA) (CeraMaker 900; 3DCeram) Subtractive Manufacturing (SM) (Isomet VR1000 Precision Saw; Buehler) | SLA: 3Y-TZP (3DMix ZrO2; 3DCeram) SM: 3Y-TZP (IPS e.max ZirCAD; Ivoclar Vivadent AG) | Not specified | Density, hardness, flexural strength | SLA samples’ relative density of 98.51% TD. SLA samples’ hardness of 1285 HV. Decrease in flexural strength for SLA and SM samples after artificial ageing treatment:
|
[64] | Stereolithography (SLA) Subtractive Manufacturing (SM) | SLA: 3Y-TZP (LithaCon 3Y 230, Lithoz; 3D Mix ZrO2, 3DCeram) and ATZ (3D Mix ATZ, 3DCeram) SM: 3Y-TZP (LAVA Plus, 3M Oral Care). | Implants | Microstructure, flexural strength | 3Y-TZP SLA samples revealed a crystal structure, flexural strength, and microstructure similar to SM samples. ATZ SLA samples showed higher flexural strength than 3Y-TZP produced by SLA and SM. |
[36] | Stereolithography (SLA) (CeraFab System S65 Medical; Lithoz GmbH) Subtractive Manufacturing (SM) (DGShape DWX 52DC) | SLA: 3Y-TZP (LithaCon 3Y 210; CeraFab System S65 Medical) SM: 3Y-TZP (Priti multidisc ZrO2 monochrome) | Not specified | Microstructure, flexural strength | SLA samples presented a layer strand texture with a smooth depression between the layers (less than 5 and 10 µm). SLA samples showed irregular surface with pits of varying dimensions (10–40 µm), but no evidence of cracks, fracture surfaces, or flaws. SLA samples presented higher flexural strength (1519 ± 254 MPa) than SM samples (981 ± 130 MPa). |
[65] | Stereolithography (SLA) (CSL 100, Porimy 3D printing Technology) Subtractive Manufacturing (SM) | SLA: YSZ (84 wt%–48 vol%) SM: ZrO2 (D98-20, Upcera) | Not specified | Dimensional accuracy, translucency, mechanical properties, microstructure | SLA samples presented dimensional accuracy, translucency and mechanical properties that vary in different build orientations:
SLA samples showed stress and weak bonding strength among the successive layers. SLA samples presented internal flaws (pores and agglomerations). SLA samples showed two types of fracture modes: fracture due to stress concentration and splintering due to crack deflection. |
[37] | Stereolithography (SLA) (CeraMaker 900; 3DCeram) | 3Y-TZP (3DMix ZrO2, 3DCeram) ATZ (20 wt% Al2O3 + 80% wt% ZrO2) (3DMix ATZ, 3DCeram) | Abutments and crowns | Fracture resistance | 3Y-TZP and ATZ crowns showed similar fracture resistance (1243.5 ± 265.5 N and (1209 ± 204.5 N, respectively). Both crowns fractured at the implant–abutment interface. |
[66] | Stereolithography (SLA) (CSL 100, Porimy) Subtractive Manufacturing (SM) (AK-D4, Aidite) | SLA: 3Y-TZP (47 vol%) (DLP1080E, Han’s Laser) SM: PSZ (SHT, Aidite) | Crowns | Finish line designs evaluation | SLA crowns exhibited margins of rounded line angle and without small flaws, although large chippings were found in knife-edged crowns. SM crowns showed margins of sharp line angle and with separate chippings. |
[67] | Stereolithography (SLA) (CeraBuilder 100, Wuhan Intelligent Laser Technology) | 80 wt% 3Y-TZP (Jiangxi Size Materais) + 20 wt% Al2O3 (Almantis) (45 vol%) | Implants | Density, hardness, fracture toughness | Relative density of 99.09% TD. Hardness of 1699 HV. Fracture toughness of 6.88 MPa⋅m1/2 |
[38] | Stereolithography (SLA) (Ceramaker C900 Flex) Subtractive Manufacturing (SM) | SLA: 3Y-TZP (3DCeram Co) SM: 3Y-TZP (ArgenZ ST) | Crowns | Microstructure, fracture load, flexural strength, flexural modulus | SLA samples with 0% porosity showed the highest fracture load (1132.7 N), flexural strength (755.1 MPa) and flexural modulus (41.273 GPa). SLA samples with 40% porosity showed the lowest fracture load (72.13 N), flexural strength (48.09 MPa) and flexural modulus (7.177 GPa). |
[25] | Stereolithography (SLA) (3DCeram) Subtractive Manufacturing (SM) | SLA: 3Y-TZP SM: 3Y-TZP | Crowns | Trueness, precision | SLA crowns revealed the best occlusal trueness (8.77 ± 0.89 µm) and worst intaglio trueness (23.90 ± 1.60 µm). Both SLA and SM crowns presented similar internal fit and marginal adaptation. SLA crowns showed higher precision (9.59 ± 0.75 µm) than SM crowns (17.31 ± 3.39 µm). |
Reference | Manufacturing Technology | Ceramic Material | Dental Application | Studied Properties | Main Results |
---|---|---|---|---|---|
[68] | Robocasting (RC) | 3Y-TZP (47 vol%) (Refractron Technologies) | Not specified | Morphology | Surface with “Stair stepped” appearance. Drying issues (e.g., cracks) observed. |
[69] | Robocasting (RC) (Lulzbot Mini, Aleph Objects) Slip Casting (SC) | RC: 3Y-TZP (80, 82, 84, 86, 88, 90 wt%–44.5, 46.2, 48, 52, 56.4, 61.3 vol%) (SF YSZ-1011, Zircomet) SC: 3Y-TZP (80 wt%–44.5 vol%) (SF YSZ-1011, Zircomet) | Not specified | Density, hardness, fracture toughness | Paste with better rheological properties: 56.4 vol% Relative density ≈ 97%TD (for RC and SC). Vickers hardness of 1485 ± 32 HV (RC) and 1397 ± 27 HV (SC). Fracture toughness of 4.11 ± 0.09 MPa.m1/2 (RC) and 3.84 ± 0.21 MPa.m1/2 (SC). |
[70] | Robocasting (RC) (Delta Wasp 2040 Turbo, Wasproject) | 3Y-TZP (60 vol%) (TZ-3YB-E, Tosoh Co) | Not specified | Density, hardness, fracture toughness, flexural strength | Relative density of 98.1% TD. Hardness of 1175 HV. Fracture toughness of 2.63 MPa.m1/2 Flexural strength of 488.96 MPa. |
[1] | Robocasting (RC) (Delta WASP 2040) Subtractive Manufacturing (SM) (M5 milling unit, Zirkonzahn) | RC: 3Y-TZP (40 vol%) (ZPEX, Tosoh) SM: 3Y-TZP (Ice Zirkon Translucent, Zirkonzahn) Glaze (IPS e.max Ceram Glaze Paste, Ivoclar Vivadent) | Crowns | Density, hardness, fracture toughness, cusp and prosthesis wear | RC samples’ relative density of 98.3% TD. RC samples presented lower hardness (≈1100 HV) and fracture toughness (≈4 MPa.m1/2) than SM samples (≈1400 HV and ≈5.2 MPa.m1/2, respectively). No wear was found both on RC and SM samples. RC samples induced lower cusp wear. Both RC and SM glazed surfaces and antagonist dental cusps suffered wear, cusps wear being higher than that found for unglazed samples. Cusps tested against RC glazed samples suffered less wear than those opposed to SM glazed samples. |
[71] | Robocasting (RC) (Delta WASP 2040) Unidirectional Compression (UC) | RC: 3Y-TZP (TZ-3Y-E, Tosoh) UC: 3Y-TZP (ZPEX, Tosoh) | Crowns | Cusp and prosthesis wear | Both RC and UC samples did not suffer wear. The cusps of RC and UC samples suffered similar wear. RC and UC cusps suffered mild abrasive wear, delamination and fatigue. |
[72] | Robocasting (RC) (Model EBRD-A32, 3D Inks) | 5Y-PSZ (42 vol%) (Zpex Smile,Tosoh) | Not specified | Density, hardness, fracture toughness, flexural strength | Relative density ≈ 94% TD. Hardness of 1295 HV. Fracture toughness of 3.91 MPa.m1/2. Flexural strength of 285 MPa. |
Reference | Manufacturing Technology | Ceramic Material | Dental Application | Studied Properties | Main Results |
---|---|---|---|---|---|
[73] | Material Jetting (MJ) (HP Deskjet 930c®) Slip Casting (SC) | MJ: 3Y-TZP (40 vol%) (TZ-3YS-E, Tosoh) SC: 3Y-TZP (40 vol%) (TZ-3YS-E, Tosoh) | Bridges | Density, microstructure, flexural strength | MJ samples have a relative density of >96%TD. MJ samples revealed a smooth surface without “stair steps” effect and drying or sintering cracks. MJ samples presented higher flexural strength (≈843 MPa) than CS samples (∼684 MPa). |
[74] | Material Jetting (MJ) | 3Y-TZP (55 vol%) (ZL-STS-3.0, Zhonglong Chemical) | Crowns | Density, hardness | Relative density of 98.5% TD. Hardness of 1468 HV. |
[75] | Material Jetting (MJ) | 5Y-TPZ (62.3 wt%–22.5 vol%) (Sigma-Aldrich) | Crowns | Density, hardness, fracture toughness | Relative density of 99.5% TD. Hardness of 1516 HV. Fracture toughness of 5.62 MPa.m1/2. |
[76] | Material Jetting (MJ) (XJET Carmel 1400 inkjet printer) | 3Y-TZP (45 wt%–12.5 vol%) (C800 zirconia model dispersion grade 7250001, XJET) | Not specified | Density, microstructure, hardness, fracture toughness, elastic modulus | Density of 99.7% TD. Presence of delamination cracks, agglomerates, spherical pores. Hardness (≈1285 HV) and fracture toughness (≈3.85 MPa.m1/2) independent of printing direction. Flexural strength of 1004 ± 138 MPa for samples printed in 0° orientation (most favorable printing direction due to layer buildup and since defects are perpendicular to the applied stress). Elastic modulus higher when printed in 45° orientation (209 ± 5 MPa) than in 0° orientation (206 ± 5 MPa). Both values indicate the presence of defects. |
Reference | Manufacturing Technology | Ceramic Material | Dental Application | Studied Properties | Main Results |
---|---|---|---|---|---|
[77] | Stereolithography (SLA) (CSL150; PORIMY) Digital Light Processing (DLP) (Cerafab 7500; Lithoz) Subtractive Manufacturing (SM) (DWX-52DCi; Roland) | SLA: ZrO2 (50 vol%) (BLM-FTC-1; PORIMY) DLP: ZrO2 (LithaCon 3Y 230 D; Lithoz) SM: ZrO2 (ST; Upcera) | Not specified | Phase composition, microstructure, flexural strength, before and after ageing | The m-phase content increased with the aging time, both for DLP and SLA samples. DLP samples showed zirconia grain fragments, while SLA samples presented grain pullout. Surface defects were not obvious for SM samples. SLA samples presented the highest flexural strength after 5 h-ageing (1010.3 MPa), followed by 10 h-ageing (913.06 MPa) and 15 h-ageing (814.28 MPa). The flexural strength for SM samples was always more than 1200 MPa, and for DLP was ≈800 MPa before and after aging for 5 h, 10 h and 15 h. |
[78] | Digital Light Processing (DLP) (Octave Light R1; Octave Light Limited) Stereolithography (SLA) (C100 EASY FAB; 3D Ceram) Subtractive Manufacturing (SM) (Dental Designer; 3Shape) | SLA: 3Y-TZP (3D Ceram) DLP: 3Y-TZP (M.O.P) SM: 4Y-PSZ/5Y-PSZ (KATANA UTML, Kuraray Noritake Dental) | Crowns | Trueness, antagonist wear, microstructure | Similar trueness of intaglio crown surfaces, regardless of the manufacturing method. Similar volume loss of the antagonist teeth:
All samples showed highly dense structures with no pores or other manufacturing defects, showing similar morphologies of fractured surfaces. |
[79] | Stereolithography (SLA) (Ceramaker900, 3DCeram) Material Jetting (MJ) (XJET, Rehovot) Digital Light Processing (DLP) (DLP1: 405 nm Prototype DLP-Printer; DLP2: CeraFab System Medical, Lithoz) Subtractive Manufacturing (SM) | SLA: 3Y-TZP (3D Mix ZrO2 Zr-P03 grade, 3DCeram) MJ: 3Y-TZP (C800 zirconia model dispersion grade 7250001, XJET) DLP1: 3Y-TZP (prototype printer) DLP2: (LithaCon 3Y 230, Lithoz) SM: 3Y-TZP (Zirconia ST, GC (s1); ZrO2 “translucent” Pritidenta (s2)) | Not specified | Accuracy, surface deviation | SM led to the most accurate samples with no significant difference regarding the material. SM only led to differences on accuracy relative to samples produced by with MJ and SLA for s1 material. Mean surface deviation <50 µm for samples produced by SM and MJ and <100 µm for SLA and DLP2. DLP1 showed surface deviations >100 µm, leading to the least accurate samples. |
[80] | 3D Gel Deposition (3DGD) Cold Isostatic Pressing (CIP) | Self-glazed zirconia (SG) Conventional zirconia (CZ) | Not specified | Microstructure, fracture force before and after fatigue tests | SG presented a fine-grained microstructure with no visible microscopic voids. Fracture force of SG significantly higher (≈8000 N) than that of CZ (≈7000 N), both before and after fatigue tests (no statistically significant difference). Both SG and CZ showed slightly increased fracture force after fatigue tests due to the stability reduction of the tetragonal phase by fatigue stress. Both SG and CZ withstood occlusal forces applied in the posterior region. SG more suitable to be used in the anterior regions due to aesthetic reasons (improved optical translucency). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branco, A.C.; Colaço, R.; Figueiredo-Pina, C.G.; Serro, A.P. Recent Advances on 3D-Printed Zirconia-Based Dental Materials: A Review. Materials 2023, 16, 1860. https://doi.org/10.3390/ma16051860
Branco AC, Colaço R, Figueiredo-Pina CG, Serro AP. Recent Advances on 3D-Printed Zirconia-Based Dental Materials: A Review. Materials. 2023; 16(5):1860. https://doi.org/10.3390/ma16051860
Chicago/Turabian StyleBranco, Ana Catarina, Rogério Colaço, Célio Gabriel Figueiredo-Pina, and Ana Paula Serro. 2023. "Recent Advances on 3D-Printed Zirconia-Based Dental Materials: A Review" Materials 16, no. 5: 1860. https://doi.org/10.3390/ma16051860
APA StyleBranco, A. C., Colaço, R., Figueiredo-Pina, C. G., & Serro, A. P. (2023). Recent Advances on 3D-Printed Zirconia-Based Dental Materials: A Review. Materials, 16(5), 1860. https://doi.org/10.3390/ma16051860