Single Crystalline Films of Ce3+-Doped Y3MgxSiyAl5−x−yO12 Garnets: Crystallization, Optical, and Photocurrent Properties
Abstract
:1. Introduction
2. Growth of Y3MgxSiyAl5−x−yO12:Ce Single Crystalline Films
3. Experimental Methods and Technique
4. Absorption, Luminescence, and Photoconductivity Properties of Y3MgxSiyAl5−x−yO12:Ce Films
4.1. Absorption Spectra
4.2. Cathodoluminescence Spectra
4.3. Photoluminescence Spectra
4.4. Scintillation Properties Y3MgxSiyAl5−x−yO12:Ce SCFs
4.5. Photocurrent Properties of Y3MgxSiyAl5−x−yO12:Ce SCFs
5. Optical Properties of Y3MgxSiyAl5−x−yO12:Ce SCFs Annealing in Reducing Atmosphere
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bardsley, N.; Bland, S.; Pattison, L.; Pattison, M.; Stober, K.; Welsh, F.; Yamada, M. Solid-State Lighting R&D. Multi-Year Program Plan; US Department of Energy: Washington, DC, USA, 2014.
- Sun, C.C.; Chang, Y.Y.; Yang, T.H.; Chung, T.Y.; Chen, C.C.; Lee, T.X.; Li, D.R.; Lu, C.Y.; Ting, Z.Y.; Glorieux, B.; et al. Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy. J. Solid State Light. 2014, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Raukas, M.; Kelso, J.; Zheng, Y.; Bergenek, K.; Eisert, D.; Linkov, A.; Jermann, F. Ceramic phosphors for light conversion in LEDs. ECS J. Solid. State Sci. Technol. 2013, 2, R3168–R3176. [Google Scholar] [CrossRef]
- Cantore, M.; Pfaff, N.; Farrell, R.M.; Speck, J.S.; Nakamura, S.; DenBaars, S.P. High luminous flux from single crystal phosphor-converted laser-based white lighting system. J. Opt. Exp. 2015, 24, 251040. [Google Scholar] [CrossRef] [PubMed]
- Nizhankovskyi, S.V.; Tan’ko, A.V.; Savvin, Y.N.; Krivonogov, S.I.; Budnikov, A.T.; Voloshin, A.V. Single crystalline YAG:Ce phosphor for powerful solid-state sources of white light. The influence of production conditions on luminescence properties and lighting characteristics. J. Opt. Spectrosc. 2016, 120, 915–921. [Google Scholar] [CrossRef]
- Li, S.; Zhu, Q.; Tang, D.; Liu, X.; Ouyang, G.; Cao, L.; Hirosaki, N.; Nishimura, T.; Huang, Z.; Xie, R.J. Al2O3:YAG: Ce composite phosphor ceramic: A thermally robust and efficient color converter for solid state laser lighting. J. Mater. Chem. C 2016, 4, 8648–8654. [Google Scholar] [CrossRef]
- Markovskyi, A.; Gorbenko, V.; Zorenko, T.; Nizhankovskiy, S.; Fedorov, A.; Zorenko, Y. Composite color converters based on Tb3Al5O12:Ce single crystalline films and Y3Al5O12:Ce crystal substrates. J. Phys. Status Solidi-Rapid Res. Lett. 2021, 15, 2100173. [Google Scholar] [CrossRef]
- Markovskyi, A.; Gorbenko, V.; Nizhankovskiy, S.; Zorenko, T.; Pakuła, M.; Kaczmarek, M.; Fedorov, A.; Zorenko, Y. Novel composite color converters based on Tb1.5Gd1.5Al5O12:Ce single crystalline films and Y3Al5O12:Ce crystal substrates. CrystEngComm 2022, 27, 4975–4982. [Google Scholar] [CrossRef]
- Setlur, A.A.; Heward, W.J.; Gao, Y.; Srivastava, A.M.; Chandran, R.G.; Shankar, M.V. Crystal Chemistry and Luminescence of Ce3+-Doped Lu2CaMg2(Si,Ge)3O12 and Its Use in LED Based Lighting. J. Chem. Mater. 2006, 18, 3314. [Google Scholar] [CrossRef]
- Shimomura, Y.; Honma, T.; Shigeiwa, M.; Akai, T.; Okamoto, K.; Kijima, N. Sensors and Displays: Principles, Materials, and Processing-Photoluminescence and Crystal Structure of Green-Emitting Ca3Sc2Si3O12: Ce3+ Phosphor for White Light Emitting Diodes. J. Electrochem. Soc. 2007, 154, J35. [Google Scholar] [CrossRef]
- Katelnikovas, A.; Bettentrup, H.; Uhlich, D.; Sakirzanovas, S.; Jüstel, T.; Kareiva, A. Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors. J. Lumin. 2009, 129, 1356–1361. [Google Scholar] [CrossRef]
- Kishore, M.S.; Kumar, N.P.; Chandran, R.G.; Setlur, A.A. Solid Solution Formation and Ce3+ Luminescence in Silicate Garnets. Electrochem. Solid-State Lett. 2010, 13, J77. [Google Scholar] [CrossRef]
- Zhong, J.; Zhuang, W.; Xing, X.; Liu, R.; Li, Y.; Liu, Y.; Hu, Y. Synthesis, Crystal Structures, and Photoluminescence Properties of Ce3+-Doped Ca2LaZr2Ga3O12: New Garnet Green-Emitting Phosphors for White LEDs. J. Phys. Chem. 2014, 119, 5562–5569. [Google Scholar] [CrossRef]
- Pan, Z.; Xu, Y.; Hu, Q.; Li, W.; Zhou, H.; Zheng, Y. Combination cation substitution tuning of yellow-orange emitting phosphor Mg2Y2Al2Si2O12:Ce3+. J. RSC Adv. 2015, 5, 9489–9496. [Google Scholar] [CrossRef]
- Li, G.; Tian, Y.; Zhao, Y.; Lin, J. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. J. Chem. Soc. Rev. 2015, 44, 8688–8713. [Google Scholar] [CrossRef]
- Shang, M.; Fan, J.; Lian, H.; Zhang, Y.; Geng, D.; Lin, J. A double substitution of Mg2+–Si4+/Ge4+ for Al (1)3+–Al (2)3+ in Ce3+-doped garnet phosphor for white LEDs. J. Inorg. Chem. 2014, 53, 7748–7755. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Shao, C.; Dong, Y.; Yang, Q. Electroluminescent properties of WLEDs with the structures of Ce:YAG single crystal/blue chip and Sr2Si5N8:Eu2+/Ce:YAG single crystal/blue chip. J. Disp. Technol. 2016, 12, 323–327. [Google Scholar] [CrossRef]
- Zhao, B.Y.; Liang, X.; Chen, Z.; Xie, C.; Luo, L.; Zhang, Z.; Xiang, W. Studies on optical properties and Ce concentration of Ce: YAG single crystal for WLEDs. Chem. J. Chin. Univ. 2014, 25, 230–236. [Google Scholar] [CrossRef]
- Ferrand, B.; Chambazand, B.; Couchaud, M. Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media. J. Opt. Mater. 1999, 11, 101–114. [Google Scholar] [CrossRef]
- Molva, E. Microchip lasers and their applications in optical microsystems. J. Opt. Mater. 1999, 11, 289–299. [Google Scholar] [CrossRef]
- Klimczak, M.; Malinowski, M.; Sarnecki, J.; Piramidowicz, R.J. Luminescence properties in the visible of Dy:YAG/YAG planar waveguides. J. Lumin. 2009, 129, 1869–1873. [Google Scholar] [CrossRef]
- Zorenko, Y.; Novosad, S.S.; Pashkovskii, M.V.; Lyskovich, A.B.; Savitskii, V.G.; Batenchuk, M.M.; Malyutenkov, P.S.; Patsagan, N.I.; Nazar, I.V.; Gorbenko, V.I. Epitaxial structures of garnets as scintillation detectors of ionizing radiation. J. Appl. Spectrosc. 1990, 52, 645–649. [Google Scholar] [CrossRef]
- Zorenko, Y.; Gorbenko, V.; Konstankevych, I.; Grinevand, B.; Globus, M. Scintillation properties of Lu3Al5O12:Ce single-crystalline films. J. Nucl. Instrum. Methods Phys. Res. 2002, 486, 309–314. [Google Scholar] [CrossRef]
- Witkiewicz-Lukaszek, S.; Gorbenko, V.; Zorenko, T.; Syrotych, Y.; Mares, J.A.; Nikl, M.; Sidletskiy, O.; Bilski, P.; Yoshikawa, A.; Zorenko, Y. Composite detectors based on single crystalline films and single crystals of garnet compounds. J. Mater. 2022, 15, 1249. [Google Scholar] [CrossRef]
- Prusa, P.; Kucera, M.; Mares, J.A.; Hanus, M.; Beitlerova, A.; Onderisinova, Z.; Nikl, M. Scintillation properties of the Ce-doped multicomponent garnet epitaxial films. Opt. Mater. 2013, 35, 2444–2448. [Google Scholar] [CrossRef]
- Robertson, J.M.; Van Tol, M.V. Cathodoluminescent garnet layers. J. Thin Solid Film 1984, 114, 221–240. [Google Scholar] [CrossRef]
- Hrytskiv, Z.D.; Zorenko, Y.; Gorbenko, V.; Pedanand, A.D.; Shkliarsyi, V.I. Single crystalline film screens for cathode-ray tubes: New life of television scanning optical microscopy. J. Radiat. Meas. 2007, 42, 933–936. [Google Scholar] [CrossRef]
- Schauer, P.; Lalinský, O.; Kucera, M. Overview of S(T)EM electron detectors with garnet scintillators: Some potentials and limits. J. Microsc. Res. Tech. 2021, 84, 753–770. [Google Scholar] [CrossRef]
- Koch, A.; Raven, C.; Spanne, P.; Snigirev, A. X-ray imaging with submicrometer resolution employing transparent luminescent screens. J. Opt. Soc. Amer. A Opt. 1998, 15, 1940–1951. [Google Scholar] [CrossRef] [Green Version]
- Martin, T.; Koch, A. Recent developments in X-ray imaging with micrometer spatial resolution. J. Synchrotron Radiat. 2006, 13, 180–194. [Google Scholar] [CrossRef] [Green Version]
- Riva, F.; Douissard, P.-A.; Martin, T.; Carla, F.; Zorenko, Y.; Dujardin, C. Epitaxial growth of gadolinium and lutetium-based aluminum perovskites thin film for X-rays micro-imaging applications. CrystEngComm 2016, 18, 608–615. [Google Scholar] [CrossRef]
- Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Fedorov, A.; Kuklinski, B.; Grinberg, M.; Bilski, P.; Gieszczyk, W.; Twardak, A.; Mandowski, A.; et al. Luminescent properties of YAlO3:Mn single crystalline films. J. Opt. Mater. 2012, 34, 1979–1983. [Google Scholar] [CrossRef]
- Witkiewicz-Lukaszek, S.; Gorbenko, V.; Zorenko, T.; Zorenko, Y.; Gieszczyk, W.; Mrozik, A.; Bilski, P. Composite thermoluminescent detectors based on the Ce3+ doped LuAG/YAG and YAG/LuAG epitaxial structures. J. Radiat. Meas. 2019, 126, 106–140. [Google Scholar] [CrossRef]
- Witkiewicz-Lukaszek, S.; Gorbenko, V.; Bilski, P.; Mrozik, A.; Zorenko, T.; Fedorov, A.; Zorenko, Y. LPE growth of composite thermoluminescent detectors based on the Lu3-xGdxAl5O12:Ce single crystalline films and YAG:Ce crystals. J. Cryst. 2020, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Markovskyi, A.; Gorbenko, V.; Zorenko, T.; Yokosawa, T.; Will, J.; Spiecker, E.; Batentschuk, M.; Elia, J.; Fedorov, A.; Zorenko, Y. LPE growth of Tb3Al5O12:Ce single crystalline film converters for WLED application. CrystEngComm 2021, 23, 3212–3219. [Google Scholar] [CrossRef]
- Markovsky, A.; Gorbenko, V.; Yokosawa, T.; Will, J.; Spiecker, E.; Batentschuk, M.; Elia, J.; Fedorov, A.; Pakuła, M.; Kaczmarek, M.; et al. Structural, luminescence and photoconversion properties of Lu3Al5O12:Ce single crystalline film phosphors for WLED application. J. Alloy. Compd. 2022, 929, 167159. [Google Scholar] [CrossRef]
- Gorbenko, V.; Zorenko, T.; Paprocki, K.; Iskaliyeva, A.; Fedorov, A.; Schröppel, F.; Levchuk, I.; Osvet, A.; Batentschuk, M.; Zorenko, Y. Epitaxial growth of single crystalline film phosphors based on the Ce3+-doped Ca2YMgScSi3O12 garnet. CrystEngComm 2017, 19, 3689–3697. [Google Scholar] [CrossRef]
- Gorbenko, V.; Zorenko, T.; Pawlowski, P.; Iskaliyeva, A.; Paprocki, K.; Suchocki, A.; Zhydachevskii, Y.; Fedorov, A.; Khaidukov, N.; Van Deun, R.; et al. Luminescent and scintillation properties of Ce3+ doped Ca2RMgScSi3O12 (R=Y, Lu) single crystalline films. J. Lumin. 2018, 195, 362–370. [Google Scholar] [CrossRef]
- Gorbenko, V.; Zorenko, T.; Witkiewicz, S.; Paprocki, K.; Iskaliyeva, A.; Kaczmarek, A.M.; Van Deun, R.; Khaidukov, M.N.; Batentschuk, M.; Zorenko, Y. Luminescence of Ce3+ multicenters in Ca2+-Mg2+-Si4+ based garnet phosphors. J. Lumin. 2018, 199, 245–250. [Google Scholar] [CrossRef]
- Gorbenko, V.; Zorenko, T.; Witkiewicz-Łukaszek, S.; Shakhno, A.; Osvet, A.; Batentschuk, M.; Fedorov, A.; Zorenko, Y. Crystallization and investigation of the structural and optical properties of Ce3+ doped Y3-xCaxAl5-ySiyO12 single crystalline film phosphors. J. Cryst. 2021, 11, 788. [Google Scholar] [CrossRef]
- Bartosiewicz, K.; Markovskyi, A.; Horiai, T.; Szymański, D.; Kurosawa, S.; Yamaji, A.; Yoshikawa, A.; Zorenko, Y. A study of Mg2+ ions effect on atoms segregation, defects formation, luminescence and scintillation properties in Ce3+ doped Gd3Al2Ga3O12 single crystals. J. Alloy. Compd. 2022, 905, 164154. [Google Scholar] [CrossRef]
- Wu, Y.; Meng, F.; Li, Q.; Koschan, M.; Melcher, C.L. Role of Ce4+ in the Scintillation Mechanism of Codoped Gd3Ga3Al2O12∶Ce. Phys. Rev. Appl. 2014, 2, 044009. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, M.; Meng, F.; Koschan, M.; Donnald, S.B.; Rothfuss, H.; Melcher, C.L. Effect of codoping on scintillation and optical properties of a Ce-doped Gd3Ga3Al2O12 scintillator. J. Phys. D Appl. Phys. 2013, 46, 475302. [Google Scholar] [CrossRef]
- Liu, S.; Feng, X.; Zhou, Z.; Nikl, M.; Shi, Y.; Pan, Y. Effect of Mg2+ co-doping on the scintillation performance of LuAG:Ce ceramics. Phys. Status Solidi (RRL)-Rapid Res. Lett. 2013, 8, 105–109. [Google Scholar] [CrossRef]
- Babin, V.; Herman, P.; Kucera, M.; Nikl, M.; Zazubovich, S. Effect of Mg2+ co-doping on the photo- and thermally stimulated luminescence of the (Lu,Gd)3(Ga,Al)5O12:Ce epitaxial films. J. Lumin. 2019, 215, 116608. [Google Scholar] [CrossRef]
- Lalinsky, O.; Schauer, P.; Kucera, M. Influence of Mg-to-Ce Concentration Ratio on Cathodoluminescence in LuAG and LuGAGG Single-Crystalline Films. Phys. Status Solidi A 2019, 216, 1801016. [Google Scholar] [CrossRef]
- Prusa, P.; Kučera, M.; Babin, V.; Bruza, P.; Parkman, T.; Panek, D.; Beitlerova, A.; Mares, J.A.; Hanus, M.; Lučeničová, Z.; et al. Tailoring and Optimization of LuAG:Ce Epitaxial Film Scintillation Properties by Mg Co-Doping. Cryst. Growth Des. 2018, 18, 4998–5007. [Google Scholar] [CrossRef]
- Schauer, P.; Lalinský, O.; Kučera, M.; Lučeničová, Z.; Hanuš, M. Effect of Mg co-doping on cathodoluminescence properties of LuGAGG:Ce single crystalline garnet films. Opt. Mater. 2017, 72, 359–366. [Google Scholar] [CrossRef]
- Babin, V.; Boháček, P.; Jurek, K.; Kučera, M.; Nikl, M.; Zazubovich, S. Dependence of Ce3+—Related photo- and thermally stimulated luminescence characteristics on Mg2+ content in single crystals and epitaxial films of Gd3(Ga,Al)5O12:Ce,Mg. Opt. Mater. 2017, 83, 290–299. [Google Scholar] [CrossRef]
- Zorenko, Y.; Zorenko, T.; Voznyak, T.; Mandowski, A.; Xia, Q.; Batentschuk, M.; Fridrich, J. Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds. IOP Conf. Ser. Mater. Sci. Eng. 2010, 15, 012060. [Google Scholar] [CrossRef]
- Barandiarán, Z.; Meijerink, A.; Seijo, L. Configuration coordinate energy level diagrams of intervalence and metal-to-metal charge transfer states of dopant pairs in solids. Phys. Chem. Chem. Phys. 2015, 17, 19874–19884. [Google Scholar] [CrossRef] [Green Version]
- Kulesza, D.; Cybińska, J.; Seijo, L.; Barandiarán, Z.; Zych, E. Anomalous red and infrared luminescence of Ce3+ ions in SrS: Ce sintered ceramics. J. Phys. Chem. C 2015, 119, 27649–27656. [Google Scholar] [CrossRef]
- Phung, Q.M.; Barandiarán, Z.; Seijo, L. Structural relaxation effects on the lowest 4f–5d transition of Ce3+ in garnets. J. Theor. Chem. Acc. 2015, 134, 37. [Google Scholar] [CrossRef]
- Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Zorenko, T.; Grinyov, B.; Sidletskiy, O.; Fedorov, A. Growth and luminescent properties of Ce and Ce–Tb doped (Y,Lu,Gd)2SiO5:Ce single crystalline films. J. Cryst. Growth 2014, 401, 577–583. [Google Scholar] [CrossRef]
Samples | Nominal Film Content in MS | Real SCF Content |
---|---|---|
1 | Y3Al5O12:Ce | Y2.95Ce0.05Al5O12 |
2 | Y3MgSiAl4O12:Ce | Y2.965Ce0.035Mg0.104Si0.081Al4.815O12 |
3 | Y3Mg1.5Si1.5Al2O12:Ce | Y2.95Ce0.045Mg0.186Si0.141Al4.673O12 |
4 | Y3Mg2Si2AlO12:Ce | Y2.96Ce0.04Mg0.345Si0.31Al4.345O12 |
5 | Y3Mg0.025Al4.975O12:Ce | n.m. |
6 | Y3Mg0.025Si0.025Al4.95O12:Ce | n.m. |
7 | Y3Mg0.05Si0.05Al4.9O12:Ce | n.m. |
8 | Y3Mg0.1Si0.1Al4.8O12:Ce | Y2.965Ce0.045Mg0.01Si0.01Al4.98O12 |
No | LY, % | t1, ns | A1 | t2, ns | A2 | t3, ns | A3 |
---|---|---|---|---|---|---|---|
1 | 100 | 67.82 | 0.99 | ||||
2 | 19 | 3.86 | 0.23 | 17.89 | 0.24 | 52.81 | 0.18 |
3 | 17 | 1.69 | 0.32 | 9.01 | 0.14 | 95.09 | 0.11 |
4 | 14 | 1.85 | 0.16 | 6.24 | 0.27 | 60.74 | 0.12 |
No | Real SCF Content | LY, % | t1/e, ns | t1/10, ns |
---|---|---|---|---|
1 | Y2.95Ce0.05Al5O12 | 100 | 68.5 | 194 |
3 | Y2.95Ce0.045Mg0.186Si0.141Al4.673O12 | 19 | 43 | 142 |
4 | Y2.96Ce0.04Mg0.345Si0.31Al4.345O12 | 14 | 35 | 116 |
4a | Y2.96Ce0.04Mg0.345Si0.31Al4.345O12 | 42 | 56 | 172 |
No. | t1, ns | A1 | t2, ns | A2 | t3, ns | A3 |
---|---|---|---|---|---|---|
1 | 3.79 | 0.53 | 11.09 | 0.92 | 19.61 | 0.14 |
2 | 3.61 | 0.27 | 16.03 | 0.27 | 50.71 | 0.47 |
3 | 2.47 | 0.25 | 12.47 | 0.23 | 40.58 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorbenko, V.; Zorenko, T.; Shakhno, A.; Popielarski, P.; Osvet, A.; Batentschuk, M.; Fedorov, A.; Mahlik, S.; Leśniewski, T.; Majewska, N.; et al. Single Crystalline Films of Ce3+-Doped Y3MgxSiyAl5−x−yO12 Garnets: Crystallization, Optical, and Photocurrent Properties. Materials 2023, 16, 1869. https://doi.org/10.3390/ma16051869
Gorbenko V, Zorenko T, Shakhno A, Popielarski P, Osvet A, Batentschuk M, Fedorov A, Mahlik S, Leśniewski T, Majewska N, et al. Single Crystalline Films of Ce3+-Doped Y3MgxSiyAl5−x−yO12 Garnets: Crystallization, Optical, and Photocurrent Properties. Materials. 2023; 16(5):1869. https://doi.org/10.3390/ma16051869
Chicago/Turabian StyleGorbenko, Vitaliy, Tetiana Zorenko, Anna Shakhno, Paweł Popielarski, Andres Osvet, Miroslaw Batentschuk, Alexander Fedorov, Sebastian Mahlik, Tadeusz Leśniewski, Natalia Majewska, and et al. 2023. "Single Crystalline Films of Ce3+-Doped Y3MgxSiyAl5−x−yO12 Garnets: Crystallization, Optical, and Photocurrent Properties" Materials 16, no. 5: 1869. https://doi.org/10.3390/ma16051869
APA StyleGorbenko, V., Zorenko, T., Shakhno, A., Popielarski, P., Osvet, A., Batentschuk, M., Fedorov, A., Mahlik, S., Leśniewski, T., Majewska, N., & Zorenko, Y. (2023). Single Crystalline Films of Ce3+-Doped Y3MgxSiyAl5−x−yO12 Garnets: Crystallization, Optical, and Photocurrent Properties. Materials, 16(5), 1869. https://doi.org/10.3390/ma16051869