Process Parameter Investigation and Torsional Strength Analysis of the Additively Manufactured 3D Structures Made of 20MnCr5 Steel
Abstract
:1. Introduction
2. Materials and Methods
- —energy per unit volume (J/mm3)
- —laser power (W)
- —hatching distance (mm)
- —exposure velocity (mm/s)
- —thickness of powder layer (mm)
- monolithic sample—MS,
- sample containing honeycomb structure—H,
- sample containing a bar structure with a bar diameter of 0.6 mm—S06,
- sample containing a bar structure with a bar diameter of 0.8 mm—S08,
- sample containing a bar structure with a bar diameter of 1 mm—S1.
3. Results and Discussion
3.1. AM Process Parameters Selection
3.2. Torsion Tests
- —torque-to-mass coefficient,
- —torque at which the specimen was broken,
- —a mass of specimen structure.
4. Conclusions
- Process parameter development for 20MnCr5 with the use of laser power equal to 225 W, an exposure velocity of 600 mm/s, and a hatching distance of 0.10 mm allowed us to obtain samples with a total porosity equal to 0.16%.
- The total rotation angle for the monolithic sample was 61°, with the loading torque equal to 172 Nm.
- Almost all tests (instead of PS06) indicated highly consistent results in every tested specimen.
- To determine the best-obtained properties, in the case of the samples with cellular structures, a torque-to-mass coefficient was introduced. It indicates the best properties of honeycomb structures, which have about 10% smaller torque-to-mass coefficient values than monolithic structures (PM samples).
- All samples broke in a plane parallel to the powder fusion layers, which is strongly affected by the part’s orientation during the AM process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pace, M.; Guarnaccio, A.; Dolce, P.; Mollica, D.; Parisi, G.; Lettino, A.; Medici, L.; Summa, V.; Ciancio, R.; Santagata, A. 3D additive manufactured 316L components microstructural features and changes induced by working life cycles. Appl. Surf. Sci. 2017, 418, 437–445. [Google Scholar] [CrossRef]
- Labeaga-Martínez, N.; Sanjurjo-Rivo, M.; Díaz-Álvarez, J.; Martínez-Frías, J. Additive manufacturing for a Moon village. Procedia Manuf. 2017, 13, 794–801. [Google Scholar] [CrossRef]
- Xu, K.; Li, B.; Li, S.; Luo, M.; Gao, X.; Jiang, C.; Song, L. In situ observation for the fatigue crack growth mechanism of 316L stainless steel fabricated by laser engineered net shaping. Int. J. Fatigue 2019, 130, 105272. [Google Scholar] [CrossRef]
- Han, S.; Salvatore, F.; Rech, J.; Bajolet, J. Abrasive flow machining (AFM) finishing of conformal cooling channels created by selective laser melting (SLM). Precis. Eng. 2020, 64, 20–33. [Google Scholar] [CrossRef]
- Kirchheim, A.; Katrodiya, Y.; Zumofen, L.; Ehrig, F.; Wick, C. Dynamic conformal cooling improves injection molding. Int. J. Adv. Manuf. Technol. 2021, 114, 107–116. [Google Scholar] [CrossRef]
- Tiismus, H.; Kallaste, A.; Vaimann, T.; Rassõlkin, A. State of the art of additively manufactured electromagnetic materials for topology optimized electrical machines. Addit. Manuf. 2022, 55, 102778. [Google Scholar] [CrossRef]
- Di Schino, A.; Stornelli, G. Additive Manufacturing: A New Concept for End Users. the Case of Magnetic Materials. Acta Met. Slovaca 2022, 28, 208–211. [Google Scholar] [CrossRef]
- Stornelli, G.; Faba, A.; Di Schino, A.; Folgarait, P.; Ridolfi, M.; Cardelli, E.; Montanari, R. Properties of Additively Manufactured Electric Steel Powder Cores with Increased Si Content. Materials 2021, 14, 1489. [Google Scholar] [CrossRef]
- Ding, Q.; Li, X.; Zhang, D.; Zhao, G.; Sun, Z. Anisotropy of poly(lactic acid)/carbon fiber composites prepared by fused deposition modeling. J. Appl. Polym. Sci. 2019, 137, 48786. [Google Scholar] [CrossRef]
- Fatemi, A.; Molaei, R.; Phan, N. Multiaxial fatigue of additive manufactured metals: Performance, analysis, and applications. Int. J. Fatigue 2020, 134, 105479. [Google Scholar] [CrossRef]
- Yusuf, S.M.; Nie, M.; Chen, Y.; Yang, S.; Gao, N. Microstructure and corrosion performance of 316L stainless steel fabricated by Selective Laser Melting and processed through high-pressure torsion. J. Alloys Compd. 2018, 763, 360–375. [Google Scholar] [CrossRef]
- Ptak, M.; Mączka, M.; Gągor, A.; Sieradzki, A.; Bondzior, B.; Dereń, P.; Pawlus, S. Phase transitions and chromium(iii) luminescence in perovskite-type [C2H5NH3][Na0.5CrxAl0.5−x(HCOO)3] (x = 0, 0.025, 0.5), correlated with structural, dielectric and phonon properties. Phys. Chem. Chem. Phys. 2016, 18, 29629–29640. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, G.; Teufelhart, S. Load-Adapted Design of Generative Manufactured Lattice Structures. Phys. Procedia 2011, 12, 385–392. [Google Scholar] [CrossRef]
- Ramadani, R.; Pal, S.; Kegl, M.; Predan, J.; Drstvenšek, I.; Pehan, S.; Belšak, A. Topology optimization and additive manufacturing in producing lightweight and low vibration gear body. Int. J. Adv. Manuf. Technol. 2021, 113, 3389–3399. [Google Scholar] [CrossRef]
- Kořínek, M.; Halama, R.; Fojtík, F.; Pagáč, M.; Krček, J.; Krzikalla, D.; Kocich, R.; Kunčická, L. Monotonic Tension-Torsion Experiments and FE Modeling on Notched Specimens Produced by SLM Technology from SS316L. Materials 2020, 14, 33. [Google Scholar] [CrossRef]
- Macek, W.; Branco, R.; Trembacz, J.; Costa, J.; Ferreira, J.; Capela, C. Effect of multiaxial bending-torsion loading on fracture surface parameters in high-strength steels processed by conventional and additive manufacturing. Eng. Fail. Anal. 2020, 118, 104784. [Google Scholar] [CrossRef]
- Han, J.-K.; Liu, X.; Lee, I.; Kuzminova, Y.O.; Evlashin, S.A.; Liss, K.-D.; Kawasaki, M. Structural evolution during nanostructuring of additive manufactured 316L stainless steel by high-pressure torsion. Mater. Lett. 2021, 302, 130364. [Google Scholar] [CrossRef]
- Fatemi, A.; Molaei, R.; Sharifimehr, S.; Shamsaei, N.; Phan, N. Torsional fatigue behavior of wrought and additive manufactured Ti-6Al-4V by powder bed fusion including surface finish effect. Int. J. Fatigue 2017, 99, 187–201. [Google Scholar] [CrossRef]
- Mirone, G.; Barbagallo, R.; Giudice, F.; Di Bella, S. Analysis and modelling of tensile and torsional behaviour at different strain rates of Ti6Al4V alloy additive manufactured by electron beam melting (EBM). Mater. Sci. Eng. A 2020, 793, 139916. [Google Scholar] [CrossRef]
- Haydn, N.G. Wadley Multifunctional periodic cellular metals. Philos. Trans. R. Soc. A 2006, 364, 31–68. [Google Scholar]
- Łuszczek, J.; Śnieżek, L.; Grzelak, K.; Kluczyński, J.; Torzewski, J.; Szachogłuchowicz, I.; Wachowski, M.; Karpiński, M. Processability of 21NiCrMo2 Steel Using the Laser Powder Bed Fusion: Selection of Process Parameters and Resulting Mechanical Properties. Materials 2022, 15, 8972. [Google Scholar] [CrossRef] [PubMed]
- Damon, J.; Koch, R.; Kaiser, D.; Graf, G.; Dietrich, S.; Schulze, V. Process development and impact of intrinsic heat treatment on the mechanical performance of selective laser melted AISI 4140. Addit. Manuf. 2019, 28, 275–284. [Google Scholar] [CrossRef]
- Jurisch, M.; Klöden, B.; Kirchner, A.; Walther, G.; Weißgärber, T. SEBM processing of 42CrMo4. Prog. Addit. Manuf. 2020, 5, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Zumofen, L.; Kirchheim, A.; Dennig, H.-J. Laser powder bed fusion of 30CrNiMo8 steel for quenching and tempering: Examination of the processability and mechanical properties. Prog. Addit. Manuf. 2020, 5, 75–81. [Google Scholar] [CrossRef] [Green Version]
Material | Powder Particles Diameter | C | Si | Cr | Mn | Ni | Mo |
---|---|---|---|---|---|---|---|
20MnCr5 | 15–45 µm | 0.15% | 0.19% | 0.90% | 1.05% | - | - |
21NiCrMo2 | 20–63 µm | 0.17–0.23% | <0.40% | 0.35–0.65% | 0.60–0.95%% | 0.40–0.70% | 0.15–0.25% |
Specimen Number | Laser Power (W) | Exposure Velocity (mm/s) | Hatch Spacing (mm) | Energy per Unit Volume (J/mm3) | Thickness of Powder Layer [mm] |
---|---|---|---|---|---|
1 | 195 | 600 | 0.10 | 108.3 | 0.03 |
2 | 225 | 600 | 0.10 | 125.0 | 0.03 |
3 | 255 | 600 | 0.10 | 141.7 | 0.03 |
4 | 195 | 700 | 0.10 | 92.9 | 0.03 |
5 | 225 | 700 | 0.10 | 107.1 | 0.03 |
6 | 255 | 700 | 0.10 | 121.4 | 0.03 |
7 | 195 | 800 | 0.10 | 81.3 | 0.03 |
8 | 225 | 800 | 0.10 | 93.8 | 0.03 |
9 | 255 | 800 | 0.10 | 106.3 | 0.03 |
10 | 195 | 600 | 0.11 | 98.5 | 0.03 |
11 | 225 | 600 | 0.11 | 113.6 | 0.03 |
12 | 255 | 600 | 0.11 | 128.8 | 0.03 |
13 | 195 | 700 | 0.11 | 84.4 | 0.03 |
14 | 225 | 700 | 0.11 | 97.4 | 0.03 |
15 | 255 | 700 | 0.11 | 110.4 | 0.03 |
16 | 195 | 800 | 0.11 | 73.9 | 0.03 |
17 | 225 | 800 | 0.11 | 85.2 | 0.03 |
18 | 255 | 800 | 0.11 | 96.6 | 0.03 |
19 | 195 | 600 | 0.12 | 90.3 | 0.03 |
20 | 225 | 600 | 0.12 | 104.2 | 0.03 |
21 | 255 | 600 | 0.12 | 118.1 | 0.03 |
22 | 195 | 700 | 0.12 | 77.4 | 0.03 |
23 | 225 | 700 | 0.12 | 89.3 | 0.03 |
24 | 255 | 700 | 0.12 | 101.2 | 0.03 |
25 | 195 | 800 | 0.12 | 67.7 | 0.03 |
26 | 225 | 800 | 0.12 | 78.1 | 0.03 |
27 | 255 | 800 | 0.12 | 88.5 | 0.03 |
28 | 200 | 1111 | 0.06 | 100.0 | 0.03 |
Parameter and Unit | Value |
---|---|
Power (W) | 225 |
Exposure velocity (mm/s) | 600 |
Hatching distance (mm) | 0.1 |
Layer thickness (µm) | 30 |
Energy per unit volume (J/mm3) | 125 |
Specimen | Max. Torque [Nm] | Mass of Structure [g] | WM Coefficient [Nm/kg] |
---|---|---|---|
PS06#1 | 9.65 | 10.67 | 904 |
PS06#2 | 9.79 | 10.42 | 936 |
PS06#3 | 9.86 | 10.64 | 927 |
PS08#1 | 21.09 | 17.94 | 1175 |
PS08#2 | 21.55 | 17.93 | 1202 |
PS08#3 | 20.33 | 17.94 | 1133 |
PS1#1 | 37.96 | 26.45 | 1435 |
PS1#2 | 37.01 | 26.48 | 1398 |
PS1#3 | 36.04 | 26.11 | 1380 |
PH#1 | 63.82 | 13.40 | 4764 |
PH#2 | 63.76 | 13.51 | 4720 |
PH#3 | 64.46 | 13.35 | 4828 |
PM#1 | 172.19 | 30.52 | 5641 |
PM#2 | 158.38 | 30.33 | 5222 |
PM#3 | 161.70 | 30.33 | 5332 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarzyński, B.; Kluczyński, J.; Łuszczek, J.; Grzelak, K.; Szachogłuchowicz, I.; Torzewski, J.; Śnieżek, L. Process Parameter Investigation and Torsional Strength Analysis of the Additively Manufactured 3D Structures Made of 20MnCr5 Steel. Materials 2023, 16, 1877. https://doi.org/10.3390/ma16051877
Sarzyński B, Kluczyński J, Łuszczek J, Grzelak K, Szachogłuchowicz I, Torzewski J, Śnieżek L. Process Parameter Investigation and Torsional Strength Analysis of the Additively Manufactured 3D Structures Made of 20MnCr5 Steel. Materials. 2023; 16(5):1877. https://doi.org/10.3390/ma16051877
Chicago/Turabian StyleSarzyński, Bartłomiej, Janusz Kluczyński, Jakub Łuszczek, Krzysztof Grzelak, Ireneusz Szachogłuchowicz, Janusz Torzewski, and Lucjan Śnieżek. 2023. "Process Parameter Investigation and Torsional Strength Analysis of the Additively Manufactured 3D Structures Made of 20MnCr5 Steel" Materials 16, no. 5: 1877. https://doi.org/10.3390/ma16051877
APA StyleSarzyński, B., Kluczyński, J., Łuszczek, J., Grzelak, K., Szachogłuchowicz, I., Torzewski, J., & Śnieżek, L. (2023). Process Parameter Investigation and Torsional Strength Analysis of the Additively Manufactured 3D Structures Made of 20MnCr5 Steel. Materials, 16(5), 1877. https://doi.org/10.3390/ma16051877