Reconstruction of Asphalt Pavements with Crumb Rubber Modified Asphalt Mixture in Cold Region: Material Characterization, Construction, and Performance
Abstract
:1. Introduction
2. Raw Materials and Construction Information
2.1. Aggregate Gradation and Mix Design
Crumb Rubber Materials
2.2. Preparation of Dry-Processed Rubberized Asphalt Mixture in the Plant
2.3. Selection of Pavement M-E Inputs
2.4. Research Methodology
2.5. Experiment Design
2.5.1. Dynamic Modulus
2.5.2. Indirect Tensile Strength (IDT)
2.5.3. Dynamic Shear Rheometer (DSR)
2.5.4. Pavement M-E Analysis
2.5.5. The Noise Reduction Evaluation of Rubberized Asphalt Pavement with the Dry Process
3. Results and Discussions
3.1. Complex Shear Modulus (|G*|)
3.2. Dynamic Modulus
3.3. IDT Strength and Failure Energy
3.4. Pavement Distress Prediction Results
4. Field Construction and Noise Level Measurement
5. Summary and Conclusions
- (1)
- The dynamic modulus test showed that the rubber-modified asphalt mixture has higher rigidity compared to that of a typical asphalt mixture, in which the dynamic modulus increased up to 19% at a different reduced frequency. The improved dynamic modulus could contribute to a better rutting resistance at various temperatures and frequencies.
- (2)
- The indirect tensile test results showed that the rubberized asphalt mixture enhances the cracking resistance compared to the typical asphalt mixture at low temperatures since the failure energy was increased by 29–50% after rubber-modification compared to that of control HMA.
- (3)
- The evaluation results of the asphalt binder reveal that compared to conventional asphalt, the rubber-modified asphalt binder shows improved high-temperature and fatigue properties.
- (4)
- The noise results illustrated that the rubberized asphalt pavement significantly reduced the noise level by 2–3 dB on the road compared to newly constructed conventional asphalt pavement at various traffic speeds. The noise mitigation effect of rubber-modified asphalt pavement was verified in the field.
- (5)
- The pavement M-E analysis showed that the rubber-modified asphalt pavement could reduce the IRI, rutting, and bottom-up fatigue-cracking in comparison with that of the normal asphalt pavement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Presti, D.L. Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review. Constr. Build. Mater. 2013, 49, 863–881. [Google Scholar] [CrossRef]
- Jin, D.; Boateng, K.A.; Ge, D.; Che, T.; Yin, L.; Harrall, W.; You, Z. A Case Study of the Comparison between Rubberized and Polymer Modified Asphalt on Heavy Traffic Pavement in Wet and Freeze Environment. Case Stud. Constr. Mater. 2023, 18, e01847. [Google Scholar] [CrossRef]
- Ferrella, M.; Ghabchi, R.; Zaman, M.; Arshadi, P.A. Use of Ground Tire Rubber (GTR) in Asphalt Pavements: Literature Review and Dot Survey; School of Civil Engineering and Environmental Science (CEES), The University of Oklahoma Norman: Oklahoma, OK, USA, 2016. [Google Scholar]
- Jin, D.; Boateng, K.A.; Chen, S.; Xin, K.; You, Z. Comparison of Rubber Asphalt with Polymer Asphalt under Long-Term Aging Conditions in Michigan. Sustainability 2022, 14, 10987. [Google Scholar] [CrossRef]
- Jin, D.; Meyer, T.K.; Chen, S.; Boateng, K.A.; Pearce, J.M.; You, Z. Evaluation of lab performance of stamp sand and acrylonitrile styrene acrylate waste composites without asphalt as road surface materials. Constr. Build. Mater. 2022, 338, 127569. [Google Scholar] [CrossRef]
- Kirk, V. CalTrans experience with rubberized asphalt concrete. In Proceedings of the Technology Transfer Session of an Introduction to Rubberized Asphalt Concrete, Topeka, KS, USA, 23 January 1991. [Google Scholar]
- Yang, X.; You, Z.; Hasan, M.R.M.; Diab, A.; Shao, H.; Chen, S.; Ge, D. Environmental and mechanical performance of crumb rubber modified warm mix asphalt using Evotherm. J. Clean. Prod. 2017, 159, 346–358. [Google Scholar] [CrossRef]
- Shen, J.; Xie, Z.; Li, B. Comprehensive Evaluation of the Long-Term Performance of Rubberized Pavement, Phase II: The Influence of Rubber and Asphalt Interaction on Mixture Durability; No. FHWA-GA-12-1229; Department of Transportation Office of Research: Atlanta, GA, USA, 2014. [Google Scholar]
- Nunez, W.P.; Ceratti, J.A.P.; Wickbouldt, V.; Brito, L.A.T.; Oliveira, J.A. Delaying Crack Reflection in Overlays: An Apt Study Comparing the Efficiency of Conventional Asphalt Concrete and Asphalt Rubber; MAIREPAV4: Belfast, UK, 2005. [Google Scholar]
- Peralta, J.; Silva, H.M.; Hilliou, L.; Machado, A.V.; Pais, J.; Williams, R.C. Mutual changes in bitumen and rubber related to the production of asphalt rubber binders. Constr. Build. Mater. 2012, 36, 557–565. [Google Scholar] [CrossRef]
- Huang, Y.; Bird, R.N.; Heidrich, O. A review of the use of recycled solid waste materials in asphalt pavements. Resour. Conserv. Recycl. 2007, 52, 58–73. [Google Scholar] [CrossRef]
- Xiao, F.; Hou, X.; Xu, O.; Amirkhanian, S.N.; Wen, Y. Rheological Comparisons of Terminally Blended and Laboratory Blended Ground Tire Rubbers. New Front. 2015, 86. [Google Scholar] [CrossRef]
- Cao, W. Study on properties of recycled tire rubber modified asphalt mixtures using dry process. Constr. Build. Mater. 2007, 21, 1011–1015. [Google Scholar] [CrossRef]
- Ge, D.; Yan, K.; You, Z.; Xu, H. Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene. Constr. Build. Mater. 2016, 126, 66–76. [Google Scholar] [CrossRef]
- Ge, D.; You, Z.; Chen, S.; Liu, C.; Gao, J.; Lv, S. The performance of asphalt binder with trichloroethylene: Improving the efficiency of using reclaimed asphalt pavement. J. Clean. Prod. 2019, 232, 205–212. [Google Scholar] [CrossRef]
- Chen, S.; Gong, F.; Ge, D.; You, Z.; Sousa, J.B. Use of reacted and activated rubber in ultra-thin hot mixture asphalt overlay for wet-freeze climates. J. Clean. Prod. 2019, 232, 369–378. [Google Scholar] [CrossRef]
- Xie, Z.; Shen, J. Performance of porous European mix (PEM) pavements added with crumb rubbers in dry process. Int. J. Pavement Eng. 2016, 17, 637–646. [Google Scholar] [CrossRef]
- Fontes, L.P.; Trichês, G.; Pais, J.C.; Pereira, P.A. Evaluating permanent deformation in asphalt rubber mixtures. Constr. Build. Mater. 2010, 24, 1193–1200. [Google Scholar] [CrossRef]
- Wang, H.; Dang, Z.; You, Z.; Cao, D. Effect of warm mixture asphalt (WMA) additives on high failure temperature properties for crumb rubber modified (CRM) binders. Constr. Build. Mater. 2012, 35, 281–288. [Google Scholar] [CrossRef]
- Kocak, S.; Kutay, M. Fatigue performance assessment of recycled tire rubber modified asphalt mixtures using viscoelastic continuum damage analysis and AASHTOWare pavement ME design. Constr. Build. Mater. 2020, 248, 118658. [Google Scholar] [CrossRef]
- Mamlouk, M.S.; Zaniewski, J.P. Materials for Civil and Construction Engineers; Pearson: London, UK, 2014. [Google Scholar]
- Neeraj, B.; Haider, S.W.; Brown, J.; Chatti, K. Characterization of Truck Traffic in Michigan for the New Mechanistic Empirical Pavement Design Guide; No. RC-1537; Michigan Department of Transportation, Construction and Technology Division: Detroit, MI, USA, 2009. [Google Scholar]
- AASHTO T 342; Standard Method of Test for Determining Dynamic Modulus of Hot Mix Asphalt (HMA). American Association of State Highway Transportation Officials: Washington, DC, USA, 2011.
- Park, S.; Schapery, R. Methods of interconversion between linear viscoelastic material functions. Part I—A numerical method based on Prony series. Int. J. Solids Struct. 1999, 36, 1653–1675. [Google Scholar] [CrossRef]
- AASHTO T 322; Standard Method of Test for Determining the Creep Compliance and Strength of Hot Mix Asphalt (HMA) Using the Indirect Tensile Test Device. American Association of State Highway Transportation Officials: Washington, DC, USA, 2007.
- AASHTO. Standard Method of Test for Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test); American Association of State Highway Transportation Officials: Washington, DC, USA, 2009. [Google Scholar]
- AASHTO. Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV); American Association of State Highway Transportation Officials: Washington, DC, USA, 2009. [Google Scholar]
- Jin, D.; Ge, D.; Zhou, X.; You, Z. Asphalt Mixture with Scrap Tire Rubber and Nylon Fiber from Waste Tires: Laboratory Performance and Preliminary ME Design Analysis. Buildings 2022, 12, 160. [Google Scholar] [CrossRef]
- Jin, D.; Wang, J.; You, L.; Ge, D.; Liu, C.; Liu, H.; You, Z. Waste cathode-ray-tube glass powder modified asphalt materials: Preparation and characterization. J. Clean. Prod. 2021, 314, 127949. [Google Scholar] [CrossRef]
- Jin, D.; Ge, D.; Chen, S.; Che, T.; Liu, H.; Malburg, L.; You, Z. Cold In-Place Recycling Asphalt Mixtures: Laboratory Performance and Preliminary ME Design Analysis. Materials 2021, 14, 2036. [Google Scholar] [CrossRef]
- Hu, J.; Yu, X. Performance evaluation of solar-responsive asphalt mixture with thermochromic materials and nano-TiO2 scatterers. Constr. Build. Mater. 2020, 247, 118605. [Google Scholar] [CrossRef]
- Kaloush, K.E. Asphalt rubber: Performance tests and pavement design issues. Constr. Build. Mater. 2014, 67, 258–264. [Google Scholar] [CrossRef]
- Rath, P.; Gettu, N.; Chen, S.; Buttlar, W.G. Investigation of cracking mechanisms in rubber-modified asphalt through fracture testing of mastic specimens. Road Mater. Pavement Des. 2021, 23, 1544–1563. [Google Scholar] [CrossRef]
Properties | Results |
---|---|
Appearance | Black, fine grained scrap rubber with white flecks |
Specific gravity | 1.15 |
Flash point, ignition temperature | 246 °C, 370 °C |
Sieve | Passing % |
---|---|
No.16 | 100 |
No.30 | 96–99 |
No.40 | 70–74 |
No.100 | 42–48 |
No.200 | 0–12 |
Layer Types and Thickness | Structure-1 | Structure-2 | Structure-3 | Structure-4 |
---|---|---|---|---|
Surface layer (3.8 cm) | 12.5 mm-HMA | 12.5 mm—Rubber-HMA | 12.5 mm-HMA | 12.5 mm—Rubber-HMA |
Leveling course (5 cm) | 19 mm-HMA | 19 mm-HMA | 19 mm—Rubber-HMA | 19 mm—Rubber-HMA |
Asphalt base course (17.8 cm) | Dense asphalt pavement course | |||
Aggregate base (15.2 cm) | Sandwich granular | |||
Aggregate base (25.4 cm) | Crushed stone | |||
Aggregate subbase (15.2 cm) | Crushed gravel | |||
subgrade | Semi-infinite |
|E*| (MPa) Average Value | |||||||
---|---|---|---|---|---|---|---|
F (Hz) | 0.1 | 0.5 | 1 | 5 | 10 | 25 | |
T (°C) | |||||||
−10 | 10,332 | 14,152 | 15,911 | 18,107 | 19,640 | 21,548 | |
10 | 2542 | 3980 | 4803 | 6767 | 7805 | 9205 | |
21 | 678 | 1044 | 1270 | 2192 | 2686 | 3398 | |
37 | 353 | 497 | 655 | 815 | 993 | 1570 | |
54 | 176 | 248 | 328 | 408 | 496 | 785 | |
|G*| (MPa) Average Value | Creep Compliance | ||||||
Temperature (°C) | Binder G* (Pa) | Phase angle (°) | Time (sec) | Temperature (°C) | |||
13 | 5,874,500 | 42.9 | −20 | −10 | 0 | ||
25 | 1,439,000 | 49.6 | 1 | 3.31 × 10−7 | 5.85 × 10−7 | 1.15 × 10−6 | |
46 | 32,997 | 68.7 | 2 | 3.56 × 10−7 | 6.42 × 10−7 | 1.29 × 10−6 | |
58 | 7005 | 72.8 | 5 | 3.90 × 10−7 | 7.21 × 10−7 | 1.49 × 10−6 | |
82 | 476.8 | 81.7 | 10 | 4.19 × 10−7 | 7.99 × 10−7 | 1.69 × 10−6 | |
(−10°C) IDT strength: 2.2 MPa | 20 | 4.55 × 10−7 | 8.85 × 10−7 | 1.91 × 10−6 | |||
50 | 5.05 × 10−7 | 1.01 × 10−7 | 2.23 × 10−6 | ||||
100 | 5.47 × 10−7 | 1.13 × 10−7 | 2.56 × 10−6 |
|E*| (MPa) Average Value | |||||||
---|---|---|---|---|---|---|---|
F (Hz) | 0.1 | 0.5 | 1 | 5 | 10 | 25 | |
T (°C) | |||||||
−10 | 10,333 | 13,319 | 15,029 | 18,046 | 19,801 | 20,763 | |
10 | 3788 | 5663 | 6665 | 8801 | 10,203 | 11,007 | |
21 | 874 | 1499 | 1941 | 3339 | 4260 | 5145 | |
37 | 406 | 559 | 672 | 1234 | 1579 | 2222 | |
54 | 203 | 280 | 336 | 617 | 789 | 1111 | |
|G*| (MPa) Average Value | Creep Compliance | ||||||
Temperature (°C) | Binder G* (Pa) | Phase angle (°) | Time (sec) | Temperature (°C) | |||
13 | 5,542,000 | 43.4 | −20 | −10 | 0 | ||
25 | 1,392,400 | 50 | 1 | 3.94 × 10−7 | 6.29 × 10−7 | 1.17 × 10−6 | |
46 | 32,135 | 69 | 2 | 4.24 × 10−7 | 7.08 × 10−7 | 1.37 × 10−6 | |
58 | 6596 | 73.5 | 5 | 4.76 × 10−7 | 8.31 × 10−7 | 1.74 × 10−6 | |
82 | 435 | 82.3 | 10 | 5.20 × 10−7 | 9.60 × 10−7 | 2.09 × 10−6 | |
(−10°C) IDT strength: 3.04 MPa | 20 | 5.72 × 10−7 | 1.12 × 10−6 | 2.53 × 10−6 | |||
50 | 6.66 × 10−7 | 1.37 × 10−6 | 3.38 × 10−6 | ||||
100 | 7.49 × 10−7 | 1.63 × 10−6 | 4.20 × 10−6 |
|E*| (MPa) Average Value | |||||||
---|---|---|---|---|---|---|---|
F (Hz) | 0.1 | 0.5 | 1 | 5 | 10 | 25 | |
T (°C) | |||||||
−10 | 12,656 | 16,536 | 18,284 | 21,951 | 23,919 | 25,259 | |
10 | 4939 | 6982 | 8035 | 10,964 | 12,338 | 13,826 | |
21 | 898 | 1511 | 1927 | 3320 | 3930 | 4750 | |
37 | 360 | 512 | 664 | 1253 | 1604 | 1949 | |
54 | 180 | 256 | 332 | 626 | 802 | 975 | |
|G*| (MPa) Average Value | Creep Compliance | ||||||
Temperature (°C) | Binder G* (Pa) | Phase angle (°) | Time (sec) | Temperature (°C) | |||
13 | 2,529,100 | 42.6 | −20 | −10 | 0 | ||
25 | 1,148,300 | 47.7 | 1 | 3.08 × 10−7 | 5.19 × 10−7 | 1.03 × 10−6 | |
46 | 43,641 | 66.1 | 2 | 3.34 × 10−7 | 5.81 × 10−7 | 1.20 × 10−6 | |
58 | 9633 | 70.3 | 5 | 3.70 × 10−7 | 6.88 × 10−7 | 1.49 × 10−6 | |
82 | 661.6 | 79.48 | 10 | 4.04 × 10−7 | 7.80 × 10−7 | 1.79 × 10−6 | |
(−10°C) IDT strength: 1.76 MPa | 20 | 4.47 × 10−7 | 8.97 × 10−7 | 2.15 × 10−6 | |||
50 | 5.10 × 10−7 | 1.10 × 10−6 | 2.77 × 10−6 | ||||
100 | 5.69 × 10−7 | 1.28 × 10−6 | 3.44 × 10−6 |
|E*| (MPa) Average Value | |||||||
---|---|---|---|---|---|---|---|
F (Hz) | 0.1 | 0.5 | 1 | 5 | 10 | 25 | |
T (°C) | |||||||
−10 | 11,791 | 15,328 | 16,938 | 20,778 | 22,689 | 23,055 | |
10 | 4180 | 6087 | 6984 | 9567 | 10,668 | 11,766 | |
21 | 919 | 1640 | 2100 | 3827 | 4725 | 6222 | |
37 | 521 | 831 | 1059 | 1888 | 2316 | 2969 | |
54 | 261 | 416 | 529 | 944 | 1158 | 1485 | |
|G*| (MPa) Average Value | Creep Compliance | ||||||
Temperature (°C) | Binder G* (Pa) | Phase angle (°) | Time (sec) | Temperature (°C) | |||
13 | 2,607,500 | 41.3 | −20 | −10 | 0 | ||
25 | 1,370,800 | 47.5 | 1 | 3.38 × 10−7 | 5.69 × 10−7 | 1.07 × 10−6 | |
46 | 51,869 | 65.6 | 2 | 3.66 × 10−7 | 6.41 × 10−7 | 1.26 × 10−6 | |
58 | 10,588 | 70.45 | 5 | 4.14 × 10−7 | 7.58 × 10−7 | 1.60 × 10−6 | |
82 | 690.1 | 79.8 | 10 | 4.55 × 10−7 | 8.80 × 10−7 | 1.90 × 10−6 | |
(−10°C) IDT strength: 2.02 MPa | 20 | 5.04 × 10−7 | 1.02 × 10−6 | 2.30 × 10−6 | |||
50 | 5.91 × 10−7 | 1.25 × 10−6 | 3.03 × 10−6 | ||||
100 | 6.65 × 10−7 | 1.50 × 10−6 | 3.71 × 10−6 |
Year | 2013 | 2015 | 2017 | Year | 2019 | 2021 | ||
---|---|---|---|---|---|---|---|---|
Pavement Type | Reconstruction Pavement Type | |||||||
Control section #1 | 4 | 3 | 2 | 12.5 mm-HMA + 19 mm-HMA section | 10 | 8 | ||
Control section #2 | 2 | 2 | 2 | 12.5 mm-rubber-HMA + 19 mm-HMA | 10 | 8 | ||
Control section #3 | 2 | 2 | 2 | 12.5 mm-rubber-HMA + 19 mm-rubber-HMA | 10 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, D.; Ge, D.; Wang, J.; Malburg, L.; You, Z. Reconstruction of Asphalt Pavements with Crumb Rubber Modified Asphalt Mixture in Cold Region: Material Characterization, Construction, and Performance. Materials 2023, 16, 1874. https://doi.org/10.3390/ma16051874
Jin D, Ge D, Wang J, Malburg L, You Z. Reconstruction of Asphalt Pavements with Crumb Rubber Modified Asphalt Mixture in Cold Region: Material Characterization, Construction, and Performance. Materials. 2023; 16(5):1874. https://doi.org/10.3390/ma16051874
Chicago/Turabian StyleJin, Dongzhao, Dongdong Ge, Jiaqing Wang, Lance Malburg, and Zhanping You. 2023. "Reconstruction of Asphalt Pavements with Crumb Rubber Modified Asphalt Mixture in Cold Region: Material Characterization, Construction, and Performance" Materials 16, no. 5: 1874. https://doi.org/10.3390/ma16051874
APA StyleJin, D., Ge, D., Wang, J., Malburg, L., & You, Z. (2023). Reconstruction of Asphalt Pavements with Crumb Rubber Modified Asphalt Mixture in Cold Region: Material Characterization, Construction, and Performance. Materials, 16(5), 1874. https://doi.org/10.3390/ma16051874