Investigation on Performances and Functions of Asphalt Mixtures Modified with Super Absorbent Polymer (SAP)
Abstract
:1. Introduction
2. Objective and Scope
3. Materials and Test Methods
3.1. Materials
3.2. Sample Preparation and Mixture Design
3.2.1. Preparation of SAP Modified Asphalt Mastic
3.2.2. Mixture Design of the Asphalt Mixtures Incorporated with SAP
3.3. Testing Methods
3.3.1. Basic Properties of SAP
3.3.2. Morphology of the SAP and Mineral Powder
3.3.3. Rheological Properties Test
3.3.4. High Temperature Stability Test
3.3.5. Water Stability Test
3.3.6. Permeability Test
4. Test Results and Analysis
4.1. Basic Properties of the SAP
4.2. Microscopic Morphology of SAP and Mineral Powder
4.3. Rheological Properties of SAP Modified Asphalt Mastic
4.4. High Temperature Stability Test
4.5. Water Stability Test
4.6. Permeability Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sulyman, M.; Sienkiewicz, M.; Haponiuk, J. Asphalt pavement material improvement: A review. Int. J. Environ. Sci. Dev. 2014, 5, 444. [Google Scholar] [CrossRef] [Green Version]
- Rahman, T.; Dawson, A.; Thom, N. Warm mix asphalt (WMA) for rapid construction in airfield pavement. Constr. Build. Mater. 2020, 246, 118411. [Google Scholar] [CrossRef]
- Segundo, I.R.; Freitas, E.; Branco, V.C.; Landi, S., Jr.; Costa, M.F.; Carneiro, J.O. Review and analysis of advances in functionalized, smart, and multifunctional asphalt mixtures. Renew. Sustain. Energy Rev. 2021, 151, 111552. [Google Scholar] [CrossRef]
- Fang, Y.; Ma, B.; Wei, K.; Wang, X.; Kang, X.; Zhang, H.; Shi, J. Effect of humid and thermal environments on the performance of an epoxy resin pavement filling joint material. Constr. Build. Mater. 2022, 357, 129158. [Google Scholar] [CrossRef]
- Wu, H.; Yu, J.; Song, W.; Zou, J.; Song, Q.; Zhou, L. A critical state-of-the-art review of durability and functionality of open-graded friction course mixtures. Constr. Build. Mater. 2020, 237, 117759. [Google Scholar] [CrossRef]
- Ma, B.; Hu, Y.; Liu, F.; Si, W.; Wei, K.; Wang, X.; Kang, X.; Chang, X. Performance of a novel epoxy crack sealant for asphalt pavements. Int. J. Pavement Eng. 2022, 23, 3068–3081. [Google Scholar] [CrossRef]
- Xiong, R.; Wang, L.; Guan, B.; Sheng, Y.; Yang, X. Durability prediction of asphalt mixture exposed to sulfate and dry-wet circle erosion environment. Int. J. Pavement Res. Technol. 2015, 8, 53. [Google Scholar]
- Wei, X. The Preparation of Two Super-Absorbent Polymers and Their Application in The Improvement of Saline-Alkali Soil. Master’s Thesis, Lanzhou Jiaotong University, Lanzhou, China, 2018. (In Chinese). [Google Scholar]
- Behera, S.; Mahanwar, P.A. Superabsorbent polymers in agriculture and other applications: A review. Polym.-Plast. Technol. Mater. 2020, 59, 341–356. [Google Scholar] [CrossRef]
- Horie, K.; Barón, M.; Fox, R.B.; He, J.; Hess, M.; Kahovec, J.; Kitayama, T.; Kubisa, P.; Maréchal, E.; Mormann, W.; et al. Definitions of terms relating to reactions of polymers and to functional polymeric materials. Pure Appl. Chem. 2004, 76, 889–906. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.; Song, W.; Zou, J.; Liu, W.; Yu, J. Experimental study on moisture susceptibility of subgrade soil with superabsorbent polymers. J. Mater. Civ. Eng. 2019, 31, 04019120. d. [Google Scholar] [CrossRef]
- Sun, B.; Wu, H.; Song, W.; Li, Z.; Yu, J. Hydration, microstructure and autogenous shrinkage behaviors of cement mortars by addition of superabsorbent polymers. Front. Struct. Civ. Eng. 2020, 14, 1274–1284. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.; Song, W.; Bai, S. Effects of superabsorbent polymers on moisture migration and accumulation behaviors in soil. J. Clean. Prod. 2021, 279, 123841. [Google Scholar] [CrossRef]
- Bentz, D.P.; Lura, P.; Roberts, J.W. Mixture proportioning for internal curing. Concr. Int. 2005, 27, 35–40. [Google Scholar]
- Wyrzykowski, M.; Lura, P.; Pesavento, F.; Gawin, D. Modeling of water migration during internal curing with superabsorbent polymers. J. Mater. Civ. Eng. 2012, 24, 1006–1016. [Google Scholar] [CrossRef]
- Sun, B.; Wu, H.; Song, W.; Li, Z.; Yu, J. Design methodology and mechanical properties of Superabsorbent Polymer (SAP) cement-based materials. Constr. Build. Mater. 2019, 204, 440–449. [Google Scholar] [CrossRef]
- Mignon, A.; Snoeck, D.; Dubruel, P.; Van Vlierberghe, S.; De Belie, N. Crack mitigation in concrete: Superabsorbent polymers as key to success? Materials 2017, 10, 237. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.X.D.; Wong, H.S.; Buenfeld, N.R. Self-sealing of cracks in concrete using superabsorbent polymers. Cem. Concr. Res. 2016, 79, 194–208. [Google Scholar] [CrossRef] [Green Version]
- Mignon, A.; Snoeck, D.; Schaubroeck, D.; Luickx, N.; Dubruel, P.; Van Vlierberghe, S.; De Belie, N. pH-responsive superabsorbent polymers: A pathway to self-healing of mastic. React. Funct. Polym. 2015, 93, 68–76. [Google Scholar] [CrossRef]
- Deng, H.; Liao, G. Assessment of influence of self-healing behavior on water permeability and mechanical performance of ECC incorporating superabsorbent polymer (SAP) particles. Constr. Build. Mater. 2018, 170, 455–465. [Google Scholar] [CrossRef]
- Chindasiriphan, P.; Yokota, H.; Pimpakan, P. Effect of fly ash and superabsorbent polymer on concrete self-healing ability. Constr. Build. Mater. 2020, 233, 116975. [Google Scholar] [CrossRef]
- Mou, K. Study on Super Absorbent Resin as Warm Mix Additive. Master’s Thesis, Beijing University of Technology, Beijing, China, 2013. (In Chinese). [Google Scholar]
- Yuan, X. Study on the Properties of Warm Mix Absorbent Mixture with High Water Absorption Resin. Master’s Thesis, Beijing University of Technology, Beijing, China, 2016. (In Chinese). [Google Scholar]
- Li, X. Research on Water Retaining Pavement Material Based on SAP Mastic. Master’s Thesis, Chang’an University, Xi’an, China, 2018. (In Chinese). [Google Scholar]
- Roberts, F.L.; Mohammad, L.N.; Wang, L.B. History of hot mix asphalt mixture design in the United States. J. Mater. Civ. Eng. 2002, 14, 279–293. [Google Scholar] [CrossRef]
- Moraes, R.; Velasquez, R.; Bahia, H.U. Measuring the effect of moisture on asphalt–aggregate bond with the bitumen bond strength test. Transp. Res. Rec. 2011, 2209, 70–81. [Google Scholar] [CrossRef]
- Chaturabong, P.; Bahia, H.U. Effect of moisture on the cohesion of asphalt mastics and bonding with surface of aggregates. Road Mater. Pavement Des. 2018, 19, 741–753. [Google Scholar] [CrossRef]
- Zhan, Y.; Wu, H.; Song, W.; Zhu, L. Molecular Dynamics Study of the Diffusion between Virgin and Aged Asphalt Binder. Coatings 2022, 12, 403. [Google Scholar] [CrossRef]
- Xu, S.; Wu, H.; Song, W.; Zhan, Y. Investigation of the aging behaviors of reclaimed asphalt. J. Clean. Prod. 2022, 356, 131837. [Google Scholar] [CrossRef]
- Geng, J.; Chen, M.; Shang, T.; Li, X.; Kim, Y.R.; Kuang, D. The Performance of super absorbent polymer (sap) water-retaining asphalt mixture. Materials 2019, 12, 1964. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Pan, S.; Cao, B.; Yan, S. One Anti-Cracking Asphalt Concrete and Preparation Method; CN112645642B; China National Intellectural Property Administration: Beijing, China, 2021. (In Chinese) [Google Scholar]
- AASHTO. Standard Method of Test for Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep; AASHTO: Washington, DC, USA, 2016. [Google Scholar]
- Huang, B.; Wu, H.; Shu, X.; Burdette, E.G. Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Constr. Build. Mater. 2010, 24, 818–823. [Google Scholar] [CrossRef]
- Williams, M.; Landel, R.; Ferry, J. Temperature dependence of relaxation mechanisms in amorphous polymers and other glass-classic forming liquids. Phys. Rev. 1955, 98, 1549. [Google Scholar]
Properties | Technical Requirements | Test Results |
---|---|---|
Penetration (25 °C, 100 g, 5 s) (0.1 mm) | 60~80 | 70 |
Softening point (Ring ball) (°C) | ≥46 | 48.0 |
Ductility (5 cm/min, 10 °C) (cm) | ≥15 | 26.4 |
Ductility (5 cm/min, 15 °C) (cm) | ≥100 | >100 |
Rolling Thin Film Oven Test (RTFOT) | ||
Mass loss (163 °C, 5 h) (%) | −0.8~+0.8 | −0.056 |
Residual penetration ratio (163 °C, 5 h) (%) | ≥61 | 64.3 |
Residual ductility (168 °C, 5 h) (cm) | ≥6 | 6.4 |
Properties | Test Results | Dry SAP | SAP Hydrogel |
---|---|---|---|
Dry appearance (@25 °C) | White powder | ||
pH value (@25 °C) | 6.5–7.0 | ||
Density (g/cm3) | 0.675 | ||
Particle size (mesh No.) | <200 | ||
Water absorption rate (mL/g) | >100 |
Gradation Composition | Mass Percentage (%) through the Following Sieve (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
Synthetic gradation | 100 | 94.7 | 75.6 | 52.4 | 35.2 | 27.6 | 21.3 | 11.9 | 7.9 | 5.0 |
upper limit | 100 | 100 | 85 | 68 | 50 | 38 | 28 | 20 | 15 | 8 |
lower limit | 100 | 90 | 68 | 38 | 24 | 15 | 10 | 7 | 5 | 4 |
Type of Asphalt Mixture | Density (g/cm)3 | Porosity (%) |
---|---|---|
SAP-0 | 2.413 | 4.34 |
SAP-10% | 2.417 | 4.31 |
SAP-20% | 2.416 | 4.30 |
SAP-30% | 2.420 | 4.25 |
SAP-40% | 2.421 | 4.25 |
SAP Content | Fitted Equation | R2 |
---|---|---|
SAP-0 | logG’(w) = 0.9004logw + 5.7263 | R2 = 0.9987 |
SAP-10% | logG’(w) = 0.9124logw + 5.6928 | R2 = 0.9987 |
SAP-20% | logG’(w) = 0.9026logw + 5.6871 | R2 = 0.9986 |
SAP-30% | logG’(w) = 0.8919logw + 5.6651 | R2 = 0.9984 |
SAP-40% | logG’(w) = 0.9015logw + 5.6633 | R2 = 0.9985 |
SAP Content (%) | (mm) | (mm/s) | (mm/s) | |
---|---|---|---|---|
0 | h = 0.001164t2 − 1.147t + 777 (R² = 0.9981) | v = −0.03231i2 + 0.8318i − 4.369 (R² = 0.9972) | v’ = − 0.06462i + 0.8318 | 0.06305 |
10 | h = 0.0005297t2 − 0.7714t + 778.4 (R² = 0.9977) | v = −0.02398i2 + 0.6077i − 3.197 (R² = 0.9968) | v’ = − 0.04796i + 0.6077 | 0.04109 |
20 | h = 0.0004043t2 − 0.6717t + 777.8 (R² = 0.9978) | v = −0.02330 i2 + 0.5599i − 2.948 (R² = 0.9956) | v’ = − 0.04660i + 0.5599 | 0.03504 |
30 | h = 0.0003366t2 − 0.6168t + 780.8 (R² = 0.9982) | v = −0.02019i2 + 0.5073i − 2.67 (R² = 0.9943) | v’ = − 0.04038i + 0.5073 | 0.03164 |
40 | h = 0.0002857t2 − 0.5682t + 690.3 (R² = 0.9984) | v = −0.01874i2 + 0.4695i − 2.47 (R² = 0.9933) | v’ = − 0.03748i + 0.4695 | 0.02855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Song, W.; Wu, H.; Zhan, Y.; Wu, Z.; Yin, J. Investigation on Performances and Functions of Asphalt Mixtures Modified with Super Absorbent Polymer (SAP). Materials 2023, 16, 1082. https://doi.org/10.3390/ma16031082
Sun Y, Song W, Wu H, Zhan Y, Wu Z, Yin J. Investigation on Performances and Functions of Asphalt Mixtures Modified with Super Absorbent Polymer (SAP). Materials. 2023; 16(3):1082. https://doi.org/10.3390/ma16031082
Chicago/Turabian StyleSun, Yuxuan, Weimin Song, Hao Wu, Yiqun Zhan, Zhezheng Wu, and Jian Yin. 2023. "Investigation on Performances and Functions of Asphalt Mixtures Modified with Super Absorbent Polymer (SAP)" Materials 16, no. 3: 1082. https://doi.org/10.3390/ma16031082
APA StyleSun, Y., Song, W., Wu, H., Zhan, Y., Wu, Z., & Yin, J. (2023). Investigation on Performances and Functions of Asphalt Mixtures Modified with Super Absorbent Polymer (SAP). Materials, 16(3), 1082. https://doi.org/10.3390/ma16031082