Construction of Bouquet-like Bi2Se3/Bi2O3@Bi Composites with High Interfacial Charge Separation for the Degradation of Atrazine
Abstract
:1. Introduction
2. Experimental Section
2.1. Methods
2.1.1. Materials
2.1.2. Preparation of Bi2Se3/Bi Nanoparticles
2.1.3. Preparation of Bi2Se3/Bi2O3@Bi Composite
2.2. Characterization
2.3. Photocatalytic Test
3. Results and Discussion
3.1. Material Structure Analysis
3.2. Morphology Characterization
3.3. Composition and Chemical State Analysis
3.4. Textural Properties of Catalysts
3.5. Photocatalytic Activity for ATZ Degradation
3.6. Optical and Photoelectric Properties
3.7. Identification of Reactive Species
3.8. Photocatalytic Mechanism of 2BBOS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Afify, A.S.; Abdallah, M.; Ismail, S.A.; Ataalla, M.; Abourehab, M.A.S.; Al-Rashood, S.T.; Ali, M.A. Development of GC–MS/MS method for environmental monitoring of 49 pesticide residues in food commodities in Al-Rass, Al-Qassim region, Saudi Arabia. Arab. J. Chem. 2022, 15, 104199. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, P.; Ou, Y.; Yan, Y.; Zhou, S.; Sun, L.; Lu, H. Insights into the microbial response mechanisms to ciprofloxacin during sulfur-mediated biological wastewater treatment using a metagenomics approach. Water Res. 2022, 223, 118995. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, A.; Aibaghi, B.; Carrier, A.J.; Ehsan, M.F.; Nganou, C.; Zhang, X.; Oakes, K.D. Rapid photodegradation mechanism enabled by broad-spectrum absorbing black anatase and reduced graphene oxide nanocomposites. Appl. Surf. Sci. 2022, 575, 151718. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, H.; Deng, X. NOx removal ability of photocatalytic cement-based materials with porous structure. J. Clean. Prod. 2022, 377, 134396. [Google Scholar] [CrossRef]
- Nájera-Cabrales, H.D.; Ortega-Arroyo, L.; Campos-Silva, I.; Mejía-Caballero, I.; Palomar-Pardavé, M.; Aldana-González, J.; Pérez-Pastén-Borja, R. Influence of TiO2 nanoparticles content as reinforce material to enhance the mechanical and corrosion resistance properties of Sn and Sn–Ag alloy for dental applications. J. Mech. Behav. Biomed. Mater. 2023, 140, 105687. [Google Scholar] [CrossRef]
- Wang, T.; Liu, X.; Han, D.; Ma, C.; Liu, Y.; Huo, P.; Yan, Y. Bi-based semiconductors composites of BiVO4 quantum dots decorated Bi12TiO20 via in-suit growth with ultrasound for enhancing photocatalytic performance. J. Alloys Compd. 2019, 785, 460–467. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, A.; Peng, D.; Mei, Y.; Wang, Y.; Guo, J.; Tan, Z.; Liu, Y.; Li, H. Facile fabrication of 3D spherical Ag2WO4 doped BiOI/BiOCl double S-scheme heterojunction photocatalyst with efficient activity for mercury removal. J. Environ. Chem. Eng. 2022, 10, 108517. [Google Scholar] [CrossRef]
- Li, H.; Hou, W.; Tao, X.; Du, N. Conjugated polyene-modified Bi2MO6 (MMo or W) for enhancing visible light photocatalytic activity. Appl. Catal. B: Environ. 2015, 172–173, 27–36. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Liu, K.; Zhu, X.; Yuan, H.; Wang, C. Photocatalytic activities of Bi2O2CO3/g-C3N4@PAN nanofibers in hydrogen production. Appl. Surf. Sci. 2022, 599, 154013. [Google Scholar] [CrossRef]
- She, S.; Zhao, B.; Wang, J.; Wei, Z.; Wu, X.; Li, Y. Construction of Bi2O3 quantum Dots/SrBi4Ti4O15 S-scheme heterojunction with enhanced photocatalytic CO2 reduction: Role of Bi2O3 quantum dots and mechanism study. Sep. Purif. Technol. 2023, 309, 123064. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, R.; Satapathy, D.K. Bi2Se3-PVDF composite: A flexible thermoelectric system. Phys. B Condens. Matter 2020, 593, 412275. [Google Scholar] [CrossRef]
- Jamshaid, M.; Khan, H.M.; Nazir, M.A.; Wattoo, M.A.; Shahzad, K.; Malik, M.; Rehman, A.-U. A novel bentonite-cobalt doped bismuth ferrite nanoparticles with boosted visible light induced photodegradation of methyl orange: Synthesis, characterization and analysis of physiochemical changes. Int. J. Environ. Anal. Chem. 2022, 2032014, 1–16. [Google Scholar] [CrossRef]
- He, R.; Ou, S.; Liu, Y.; Liu, Y.; Xu, D. In situ fabrication of Bi2Se3/g-C3N4 S-scheme photocatalyst with improved photocatalytic activity. Chin. J. Catal. 2022, 43, 370–378. [Google Scholar] [CrossRef]
- Jayachitra, S.; Ravi, P.; Murugan, P.; Sathish, M. Supercritically exfoliated Bi(2)Se(3) nanosheets for enhanced photocatalytic hydrogen production by topological surface states over TiO(2). J. Colloid Interface Sci. 2022, 605, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Huang, C.; Zhou, T.; Hu, J. Strike a balance between adsorption and catalysis capabilities in Bi2Se3−xOx composites for high-efficiency antibiotics remediation. Chem. Eng. J. 2020, 382, 122877. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, K.; Guo, T.; Li, J.; Wu, X.; Zhang, G. Construction of 2D/2D Bi2Se3/g-C3N4 nanocomposite with High interfacial charge separation and photo-heat conversion efficiency for selective photocatalytic CO2 reduction. Appl. Catal. B Environ. 2020, 277, 119232. [Google Scholar] [CrossRef]
- Yu, X.; Feng, Q.; Ma, D.; Lin, H.; Liu, Z.; Huang, Y.; Huang, X.; Dong, X.; Lei, Y.; Wang, D. Facile synthesis of α/β-Bi2O3 hetero-phase junction by a solvothermal method for enhanced photocatalytic activities. Mol. Catal. 2021, 503, 111431. [Google Scholar] [CrossRef]
- Wang, D.; Yu, X.; Feng, Q.; Lin, X.; Huang, Y.; Huang, X.; Li, X.; Chen, K.; Zhao, B.; Zhang, Z. In-situ growth of β-Bi2O3 nanosheets on g-C3N4 to construct direct Z-scheme heterojunction with enhanced photocatalytic activities. J. Alloys Compd. 2021, 859, 157795. [Google Scholar] [CrossRef]
- Qin, T.; Wang, D. Unlocking the Optimal Aqueous δ-Bi2O3 Anode via Unifying Octahedrally Liberate Bi-Atoms and Spilled Nano-Bi Exsolution. Energy Storage Mater. 2021, 36, 376–386. [Google Scholar] [CrossRef]
- Pan, Z.; Qian, L.; Shen, J.; Huang, J.; Guo, Y.; Zhang, Z. Construction and application of Z-scheme heterojunction In2O3/Bi4O7 with effective removal of antibiotic under visible light. Chem. Eng. J. 2021, 426, 130385. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, Z.; Cheng, Y.; Qiu, L.; Gao, C.; Zhou, J. Template-free fabrication of α- and β-Bi2O3 hollow spheres and their visible light photocatalytic activity for water purification. J. Alloys Compd. 2014, 605, 102–108. [Google Scholar] [CrossRef]
- Gao, B.; Pan, Y.; Chang, Q.; Xi, Z.; Yang, H. Hierarchically Z-scheme photocatalyst of {0 1 0}BiVO4/Ag/CdS with enhanced performance in synergistic adsorption-photodegradation of fluoroquinolones in water. Chem. Eng. J. 2022, 435, 98–112. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Z.; Zhong, K.; Li, Q.; Ding, P.; Feng, Z.; Yang, J.; Du, Y.; Song, Y.; Hua, Y.; et al. Mo-O-Bi Bonds as interfacial electron transport bridges to fuel CO2 photoreduction via in-situ reconstruction of black Bi2MoO6/BiO2-x heterojunction. Chem. Eng. J. 2022, 429, 132204. [Google Scholar] [CrossRef]
- Wang, D.; Huang, Y.; Yu, X.; Huang, X.; Zhong, Y.; Huang, X.; Liu, Z.; Feng, Q. Template-free synthesis of high specific surface area gauze-like porous graphitic carbon nitride for efficient photocatalytic degradation of tetracycline hydrochloride. J. Mater. Sci. 2020, 56, 4641–4653. [Google Scholar] [CrossRef]
- Wang, D.; Dong, X.; Lei, Y.; Lin, C.; Huang, D.; Yu, X.; Zhang, X. Fabrication of Mn/P co-doped hollow tubular carbon nitride by a one-step hydrothermal–calcination method for the photocatalytic degradation of organic pollutants. Catal. Sci. Technol. 2022, 12, 5709–5722. [Google Scholar] [CrossRef]
- Gan, Y.; He, H.; Mu, M.; Yuan, J.; Liao, H.; Li, X.; Yu, Y.; Zhang, X.; Liu, J. Fabrication of Bi2Se3/Mo3Se4 composite for efficient sodium storage. J. Alloys Compd. 2022, 923, 166462. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, D.; Ji, J.; Yan, J.; Dong, X.; Han, J.; Liang, X.; Wei, Q.; Huang, X.; Yu, X.; et al. Synthesis of porous pinecone-like structure via facile carbon quantum dots modulation: A promising approach for improving the photocatalytic capability of carbon nitride. J. Environ. Chem. Eng. 2022, 10, 107757. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, W.; Fang, J.; Liu, Z.; Chen, D.; Pan, T.; Yu, Y.; Fang, Z. Highly dispersed bismuth oxide quantum dots/graphite carbon nitride nanosheets heterojunctions for visible light photocatalytic redox degradation of environmental pollutants. Appl. Catal. B: Environ. 2021, 295, 120279. [Google Scholar] [CrossRef]
- Jia, Y.; Li, S.; Ma, H.; Gao, J.; Zhu, G.; Zhang, F.; Park, J.Y.; Cha, S.; Bae, J.S.; Liu, C. Oxygen vacancy rich Bi2O4-Bi4O7-BiO2-x composites for UV-vis-NIR activated high efficient photocatalytic degradation of bisphenol A. J. Hazard. Mater. 2020, 382, 121121. [Google Scholar] [CrossRef]
- Li, W.; Gao, N.; Li, H.; Sun, R.; Liu, Q.; Huang, B.; Chen, Q. Bi@Bi2O3 anchored on porous graphene prepared by solvothermal method as a high-performance anode material for potassium-ion batteries. J. Alloys Compd. 2023, 939, 168766. [Google Scholar] [CrossRef]
- Deng, Y.; Zhou, Z.; Zeng, H.; Tang, R.; Li, L.; Wang, J.; Feng, C.; Gong, D.; Tang, L.; Huang, Y. Phosphorus and kalium co-doped g-C3N4 with multiple-locus synergies to degrade atrazine: Insights into the depth analysis of the generation and role of singlet oxygen. Appl. Catal. B Environ. 2023, 320, 121942. [Google Scholar] [CrossRef]
- Dong, X.; Huang, X.; Wang, D.; Lei, Y.; Han, J.; Liang, X.; Wei, Q. Constructing crystalline needle-mushroom-like/amorphous nanosheet carbon nitride homojunction by molten salt method for photocatalytic degradation of tetracycline hydrochloride. J. Mater. Sci. Mater. Electron. 2022, 33, 6043–6058. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, Y.; Zhou, S.; Soomro, R.A.; Jiang, M.; Xu, B. A metal-organic framework derived approach to fabricate in-situ carbon encapsulated Bi/Bi(2)O(3) heterostructures as high-performance anodes for potassium ion batteries. J. Colloid Interface Sci. 2023, 630, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.-B.; Yang, C.-L.; Wang, M.-S.; Ma, X.-G. Newfound two-dimensional Bi2Se3 monolayers for driving hydrogen evolution reaction with the visible-light. Appl. Surf. Sci. 2021, 564, 150389. [Google Scholar] [CrossRef]
- de Melo Santos Moura, M.M.; do Nascimento, G.E.; Sales, D.C.S.; Rodríguez-Díaz, J.M.; da Rocha, O.R.S.; Duarte, M.M.M.B. Development of Recirculating Photocatalytic Reactor with TiO2 Supported on Post-consumption Polystyrene Film: Evaluation of Hazardous Food Colorants Degradation. Water Air Soil Pollut. 2022, 233, 513. [Google Scholar] [CrossRef]
- Yan, R.; Liu, X.; Zhang, H.; Ye, M.; Wang, Z.; Yi, J.; Gu, B.; Hu, Q. Carbon Quantum Dots Accelerating Surface Charge Transfer of 3D PbBiO(2)I Microspheres with Enhanced Broad Spectrum Photocatalytic Activity-Development and Mechanism Insight. Materials 2023, 16, 1111. [Google Scholar] [CrossRef]
- Son, H.; Kim, Y. Near-infrared driven photocatalyst (Ag/BiO2-x) with post-illumination catalytic memory. J. Phys. Chem. Solids 2022, 167. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Li, Y.; Yang, L.; Wang, C.; Liu, J.; Li, H. Enhancement of photocatalytic activity of Z-scheme BiO2-x/BiOI heterojunction through vacancy engineering. Appl. Surf. Sci. 2021, 555, 149665. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, L.; Zhang, Y. Preparation of organic-inorganic PDI/BiO2-x photocatalyst with boosted photocatalytic performance. J. Taiwan Inst. Chem. Eng. 2021, 132, 104111. [Google Scholar] [CrossRef]
- Liu, J.; Huang, L.; Li, Y.; Yang, L.; Wang, C.; Liu, J.; Song, Y.; Yang, M.; Li, H. Construction of oxygen vacancy assisted Z-scheme BiO2−x/BiOBr heterojunction for LED light pollutants degradation and bacteria inactivation. J. Colloid Interface Sci. 2021, 600, 344–357. [Google Scholar] [CrossRef]
- Wang, M.; Tan, G.; Zhang, D.; Li, B.; Lv, L.; Wang, Y.; Ren, H.; Zhang, X.; Xia, A.; Liu, Y. Defect-mediated Z-scheme BiO2-x/Bi2O2.75 photocatalyst for full spectrum solar-driven organic dyes degradation. Appl. Catal. B Environ. 2019, 254, 98–112. [Google Scholar] [CrossRef]
- Liu, J.; Huang, L.; Li, Y.; Yang, L.; Wang, C.; Liu, J.; Song, Y.; Tian, Q.; Li, H. Fabrication oxygen defect-mediated double Z-scheme BiOI/BiO2−x/BiOBr photocatalyst for pollutions degradation and bacteria inactivation. J. Environ. Chem. Eng. 2021, 10, 106668. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Q.; Zhang, J.; Xiang, M.; Zhou, Y.; Chen, Z.; Chen, Y.; Yao, T. Broad spectrum driven Y doped BiO2−x for enhanced degradation of tetracycline: Synergy between singlet oxygen and free radicals. Appl. Surf. Sci. 2023, 607, 154957. [Google Scholar] [CrossRef]
- Chen, Y.; Han, Z.; Liu, Z.; Liu, Z.; Feng, P. Fabrication of flower-like BiO2-x/AgBiO3 photocatalysts with excellent visible light driven photocatalytic degradation. J. Phys. Chem. Solids 2022, 165, 110692. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Liu, Z. BiO2-x/NaBiO3 hybrid composites: Facile synthesis, enhanced photocatalytic activity and mechanism. Solid State Sci. 2019, 95, 105935. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J. Face-to-face BiOCl/BiO2-x heterojunction composites with highly efficient charge separation and photocatalytic activity. J. Alloy. Compd. 2020, 832, 153771. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J. Fabrication of BiO2-x@TiO2 heterostructures with enhanced photocatalytic activity and stability. Appl. Surf. Sci. 2020, 511, 145460. [Google Scholar] [CrossRef]
- Jia, Y.; Zhao, T.; Liu, D.; Han, H.; Gao, J.; Zhu, G.; Kwon, N.; Bae, J.-S.; Liu, C. Hydrothermal synthesis of BiO2−x–(BiO)2CO3 composite and their photocatalytic performance with visible light radiation. Mater. Lett. 2018, 238, 281–285. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, Y.; Souvanhthong, B.; Zhao, J. Time-dependent synthesis of BiO2-x/Bi composites with efficient visible-light induced photocatalytic activity. J. Colloid Interface Sci. 2018, 531, 311–319. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Y.; Tang, C.; Wang, W.; Liu, M.; Zhao, G. Mechanisim investigation on the enhanced and selective photoelectrochemical oxidation of atrazine on molecular imprinted mesoporous TiO2. Appl. Catal. B Environ. 2019, 246, 50–60. [Google Scholar] [CrossRef]
- Huang, Y.; Han, C.; Liu, Y.; Nadagouda, M.; Machala, L.; O’Shea, K.; Sharma, V.; Dionysiou, D. Degradation of atrazine by ZnxCu1−xFe2O4 nanomaterial-catalyzed sulfite under UV–vis light irradiation: Green strategy to generate SO4−. Appl. Catal. B Environ. 2018, 221, 380–392. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Pang, M.; Meng, D.; Qiu, J.; Wang, D. Construction of Bouquet-like Bi2Se3/Bi2O3@Bi Composites with High Interfacial Charge Separation for the Degradation of Atrazine. Materials 2023, 16, 1896. https://doi.org/10.3390/ma16051896
Han J, Pang M, Meng D, Qiu J, Wang D. Construction of Bouquet-like Bi2Se3/Bi2O3@Bi Composites with High Interfacial Charge Separation for the Degradation of Atrazine. Materials. 2023; 16(5):1896. https://doi.org/10.3390/ma16051896
Chicago/Turabian StyleHan, Juncheng, Menghan Pang, Donghuan Meng, Jianrong Qiu, and Dongbo Wang. 2023. "Construction of Bouquet-like Bi2Se3/Bi2O3@Bi Composites with High Interfacial Charge Separation for the Degradation of Atrazine" Materials 16, no. 5: 1896. https://doi.org/10.3390/ma16051896
APA StyleHan, J., Pang, M., Meng, D., Qiu, J., & Wang, D. (2023). Construction of Bouquet-like Bi2Se3/Bi2O3@Bi Composites with High Interfacial Charge Separation for the Degradation of Atrazine. Materials, 16(5), 1896. https://doi.org/10.3390/ma16051896