Solid-State Transformations of Mayenite and Core-Shell Structures of C12A7@C Type at High Pressure, High Temperature Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the C12A7 and C12A7@C Samples
2.2. HPHT Experiments
2.3. Phase Characterization of the Materials
3. Results and Discussion
3.1. Characterization of the Initial C12A7-600 and C12A7@C-1400 Samples
3.2. Characterization of the C12A7-600 and C12A7@C-1400 Samples after the HPHT Experiment between Graphene Layers
3.3. Characterization of the C12A7-600 and C12A7@C-1400 Samples after the HPHT Experiment between MgO Layers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeevaratnam, J.; Dent Glasser, L.S.; Glasser, F.P. Structure of Calcium Aluminate, 12CaO∙7Al2O3. Nature 1962, 194, 764–765. [Google Scholar] [CrossRef]
- Jeevaratnam, J.; Glasser, F.P.; Dent Glasser, L.S. Anion Substitution and Structure of 12CaO∙7Al2O3. J. Am. Ceram. Soc. 1964, 47, 105–106. [Google Scholar] [CrossRef]
- Cockayne, B.; Lent, B. Single crystal growth of 12CaO∙7Al2O3. J. Cryst. Growth 1979, 46, 467–473. [Google Scholar] [CrossRef]
- Willams, P.P. Crystal Structure of a Fluoride Derivative of 12CaO∙7Al2O3. J. Am. Ceram. Soc. 1968, 51, 531. [Google Scholar] [CrossRef]
- Lacerda, M.; West, A.; Irvine, J. Electrical properties of Ca12Al14O33: Effect of hydrogen reduction. Solid State Ion. 1993, 59, 257–262. [Google Scholar] [CrossRef]
- Lacerda, M.; Irvine, J.T.S.; Glasser, F.P.; West, A.R. High oxide ion conductivity in Ca12Al14O33. Nature 1988, 332, 525–526. [Google Scholar] [CrossRef]
- Hosono, H.; Abe, Y. Occurrence of superoxide radical ion in crystalline calcium aluminate 12CaO∙7Al2O3 prepared via solid-state reactions. Inorg. Chem. 1987, 26, 1192–1195. [Google Scholar] [CrossRef]
- Zhmoidin, G.I.; Chatterjee, A.K. Conditions and mechanism of interconvertibility of compounds 12CaO∙7Al2O3 and 5CaO∙3Al2O3. Cem. Concr. Res. 1984, 14, 386–396. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Capmas, A. Calcium Aluminate Cements. In Lea’s Chemistry of Cement and Concrete; Edward Arnold: London, UK, 1998; pp. 713–782. [Google Scholar] [CrossRef]
- Kumaresh, T.; Awin, E.W.; Bhaskar, L.K.; Djordjevic, M.P.; Matović, B.; Kumar, R. Combustion synthesis of luminescent Eu-doped single phase Mayenite. J. Solid State Chem. 2021, 302, 122420. [Google Scholar] [CrossRef]
- Yang, H.; Wang, R.; Wang, Y.; Jiang, J.; Guo, X. Synthesis and characterization of macroporous europium-doped Ca12Al14O33 (C12A7:Eu3+) and its application in metal ion detection. New J. Chem. 2019, 43, 8315–8324. [Google Scholar] [CrossRef]
- Domínguez, M.; Pérez-Bernal, M.E.; Ruano-Casero, R.J.; Barriga, C.; Rives, V.; Ferreira, R.A.S.; Carlos, L.D.; Rocha, J. Multiwavelength Luminescence in Lanthanide-Doped Hydrocalumite and Mayenite. Chem. Mater. 2011, 23, 1993–2004. [Google Scholar] [CrossRef]
- Xue, X.; Li, H.; Liu, S.; Lu, L.; Liu, Q.; Mi, X.; Bai, Z.; Zhang, X.; Liu, X. Effect of the anion on the luminescence properties of Bi3+-doped X-mayenite (X=O, F, Cl) phosphors. Mater. Res. Bull. 2021, 139, 111283. [Google Scholar] [CrossRef]
- Yang, S.; Kondo, J.N.; Hayashi, K.; Hirano, M.; Domen, K.; Hosono, H. Partial oxidation of methane to syngas over promoted C12A7. Appl. Catal. A Gen. 2004, 277, 239–246. [Google Scholar] [CrossRef]
- Hayashi, F.; Toda, Y.; Kanie, Y.; Kitano, M.; Inoue, Y.; Yokoyama, T.; Hara, M.; Hosono, H. Ammonia decomposition by ruthenium nanoparticles loaded on inorganic electride C12A7:e−. Chem. Sci. 2013, 4, 3124–3130. [Google Scholar] [CrossRef]
- Di Carlo, A.; Borello, D.; Sisinni, M.; Savuto, E.; Venturini, P.; Bocci, E.; Kuramoto, K. Reforming of tar contained in a raw fuel gas from biomass gasification using nickel-mayenite catalyst. Int. J. Hydrogen Energy 2015, 40, 9088–9095. [Google Scholar] [CrossRef]
- Cucciniello, R.; Intiso, A.; Castiglione, S.; Genga, A.; Proto, A.; Rossi, F. Total oxidation of trichloroethylene over mayenite (Ca12Al14O33) catalyst. Appl. Catal. B Environ. 2017, 204, 167–172. [Google Scholar] [CrossRef]
- Di Giuliano, A.; Giancaterino, F.; Courson, C.; Foscolo, P.U.; Gallucci, K. Development of a Ni-CaO-mayenite combined sorbent-catalyst material for multicycle sorption enhanced steam methane reforming. Fuel 2018, 234, 687–699. [Google Scholar] [CrossRef]
- Savuto, E.; Navarro, R.M.; Mota, N.; Di Carlo, A.; Bocci, E.; Carlini, M.; Fierro, J.L.G. Steam reforming of tar model compounds over Ni/Mayenite catalysts: Effect of Ce addition. Fuel 2018, 224, 676–686. [Google Scholar] [CrossRef]
- Cucciniello, R.; Intiso, A.; Siciliano, T.; Palomares, A.E.; Martínez-Triguero, J.; Cerrillo, J.L.; Proto, A.; Rossi, F. Oxidative Degradation of Trichloroethylene over Fe2O3-doped Mayenite: Chlorine Poisoning Mitigation and Improved Catalytic Performance. Catalysts 2019, 9, 747. [Google Scholar] [CrossRef] [Green Version]
- Di Giuliano, A.; Gallucci, K.; Foscolo, P.U.; Courson, C. Effect of Ni precursor salts on Ni-mayenite catalysts for steam methane reforming and on Ni-CaO-mayenite materials for sorption enhanced steam methane reforming. Int. J. Hydrogen Energy 2019, 44, 6461–6480. [Google Scholar] [CrossRef]
- Shuvarakova, E.I.; Ilyina, E.V.; Cherepanova, S.V.; Gerasimov, E.Y.; Bedilo, A.F.; Vedyagin, A.A. Synthesis of Vanadia-Mayenite Nanocomposites and Characterization of Their Structure, Morphology and Surface Sites. J. Compos. Sci. 2022, 6, 254. [Google Scholar] [CrossRef]
- Shuvarakova, E.I.; Ilyina, E.V.; Stoyanovskii, V.O.; Veselov, G.B.; Bedilo, A.F.; Vedyagin, A.A. Exploration of Optical, Redox, and Catalytic Properties of Vanadia-Mayenite Nanocomposites. J. Compos. Sci. 2022, 6, 308. [Google Scholar] [CrossRef]
- Ilyina, E.V.; Bedilo, A.F.; Veselov, G.B.; Gerus, Y.Y.; Shuvarakova, E.I.; Stoyanovskii, V.O.; Vedyagin, A.A. Comparative Study of Pd-Mayenite Catalysts Prepared via Aerogel Approaches. Gels 2022, 8, 809. [Google Scholar] [CrossRef]
- Hayashi, K.; Matsuishi, S.; Kamiya, T.; Hirano, M.; Hosono, H. Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor. Nature 2002, 419, 462–465. [Google Scholar] [CrossRef]
- Matsuishi, S.; Toda, Y.; Miyakawa, M.; Hayashi, K.; Kamiya, T.; Hirano, M.; Tanaka, I.; Hosono, H. High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e−). Science 2003, 301, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Miyakawa, M.; Hayashi, K.; Sakai, T.; Hirano, M.; Hosono, H. Simple and efficient fabrication of room temperature stable electride: Melt-solidification and glass ceramics. J. Am. Chem. Soc. 2005, 127, 1370–1371. [Google Scholar] [CrossRef]
- Hayashi, K.; Ueda, N.; Matsuishi, S.; Hirano, M.; Kamiya, T.; Hosono, H. Solid State Syntheses of 12SrO·7Al2O3 and Formation of High Density Oxygen Radical Anions, O− and O2−. Chem. Mater. 2008, 20, 5987–5996. [Google Scholar] [CrossRef]
- Hayashi, K.; Hirano, M.; Matsuishi, S.; Hosono, H. Microporous crystal 12CaO∙7Al2O3 encaging abundant O− radicals. J. Am. Chem. Soc. 2002, 124, 738–739. [Google Scholar] [CrossRef]
- Hayashi, K.; Matsuishi, S.; Hirano, M.; Hosono, H. Formation of oxygen radicals in 12CaO∙7Al2O3: Instability of extraframework oxide ions and uptake of oxygen gas. J. Phys. Chem. B 2004, 108, 8920–8925. [Google Scholar] [CrossRef]
- Matsuishi, S.; Hayashi, K.; Hirano, M.; Tanaka, I.; Hosono, H. Superoxide ion encaged in nanoporous crystal 12CaO∙7Al2O3 studied by continuous wave and pulsed electron paramagnetic resonance. J. Phys. Chem. B 2004, 108, 18557–18568. [Google Scholar] [CrossRef]
- Matsuishi, S.; Hayashi, K.; Hirano, M.; Hosono, H. Hydride ion as photoelectron donor in microporous crystal. J. Am. Chem. Soc. 2005, 127, 12454–12455. [Google Scholar] [CrossRef]
- Hayashi, K.; Sushko, P.V.; Shluger, A.L.; Hirano, M.; Hosono, H. Hydride ion as a two-electron donor in a nanoporous crystalline semiconductor 12CaO∙7Al2O3. J. Phys. Chem. B 2005, 109, 23836–23842. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Sushko, P.V.; Hashimoto, Y.; Shluger, A.L.; Hosono, H. Hydride ions in oxide hosts hidden by hydroxide ions. Nat. Commun. 2014, 5, 3515. [Google Scholar] [CrossRef] [Green Version]
- Miyakawa, M.; Hayashi, K.; Hirano, M.; Toda, Y.; Kamiya, T.; Hosono, H. Fabrication of highly conductive 12CaO∙7Al2O3 thin films encaging hydride ions by proton implantation. Adv. Mater. 2003, 15, 1100. [Google Scholar] [CrossRef]
- Kim, S.W.; Hosono, H. Synthesis and properties of 12CaO∙7Al2O3 electride: Review of single crystal and thin film growth. Philos. Mag. 2012, 92, 2596–2628. [Google Scholar] [CrossRef]
- Toda, Y.; Kubota, Y.; Hirano, M.; Hirayama, H.; Hosono, H. Surface of Room-Temperature-Stable Electride Ca24Al28O644+.e−4: Preparation and Its Characterization by Atomic-Resolution Scanning Tunneling Microscopy. ACS Nano 2011, 5, 1907–1914. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Shimoyama, T.; Hosono, H. Solvated Electrons in High-Temperature Melts and Glasses of the Room-Temperature Stable Electride Ca24Al28O644+.4e−. Science 2011, 333, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K.; Konaka, Y.; Maniwa, Y.; Matsuishi, S.; Hosono, H. Electronic state and cage distortion in the room-temperature stable electride Ca24Al28O644+O2−2-xe−2x as probed by Al-27 NMR. Phys. Rev. B 2009, 80, 245103. [Google Scholar] [CrossRef]
- Huang, S.; Gao, L.; Fu, Q.; Bu, Y.X. Regulating Work Function of Ca24Al28O644+:4e− Electrides via Changing Solvated Electron Characters. J. Phys. Chem. Lett. 2021, 12, 3274–3280. [Google Scholar] [CrossRef]
- Heiler, A.; Waetzig, K.; Tajmar, M.; Friedl, R.; Nocentini, R.; Fantz, U. Work function performance of a C12A7 electride surface exposed to low pressure low temperature hydrogen plasmas. J. Vac. Sci. Technol. A 2021, 39, 013002. [Google Scholar] [CrossRef]
- Feizi, E.; Ray, A.K. 12CaO∙7Al2O3 Ceramic: A Review of the Electronic and Optoelectronic Applications in Display Devices. J. Disp. Technol. 2016, 12, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Toda, Y.; Yanagi, H.; Ikenaga, E.; Kim, J.J.; Kobata, M.; Ueda, S.; Kamiya, T.; Hirano, M.; Kobayashi, K.; Hosono, H. Work function of a room-temperature, stable electride Ca24Al28O644+e−4. Adv. Mater. 2007, 19, 3564. [Google Scholar] [CrossRef]
- Zaikovskii, V.I.; Volodin, A.M.; Stoyanovskii, V.O.; Cherepanova, S.V.; Vedyagin, A.A. Effect of carbon coating on spontaneous C12A7 whisker formation. Appl. Surf. Sci. 2018, 444, 336–338. [Google Scholar] [CrossRef]
- Yakovlev, I.V.; Volodin, A.M.; Papulovskiy, E.S.; Andreev, A.S.; Lapina, O.B. Structure of Carbon-Coated C12A7 Electride via Solid-State NMR and DFT Calculations. J. Phys. Chem. C 2017, 121, 22268–22273. [Google Scholar] [CrossRef]
- Volodin, A.M.; Zaikovskii, V.I.; Kenzhin, R.M.; Bedilo, A.F.; Mishakov, I.V.; Vedyagin, A.A. Synthesis of nanocrystalline calcium aluminate C12A7 under carbon nanoreactor conditions. Mater. Lett. 2017, 189, 210–212. [Google Scholar] [CrossRef]
- Volodin, A.M.; Bedilo, A.F.; Mishakov, I.V.; Zaikovskii, V.I.; Vedyagin, A.A.; Kenzhin, R.M.; Stoyanovskii, V.O.; Golohvast, K.S. Carbon Nanoreactor for the Synthesis of nanocrystalline High-Temperature Oxide Materials. Nanotechnol. Russ. 2014, 9, 700–706. [Google Scholar] [CrossRef]
- Miyakawa, M.; Kobayashi, K.; Taniguchi, T. High-pressure synthesis of a 12CaO·7Al2O3–12SrO·7Al2O3 solid solution. J. Am. Ceram. Soc. 2017, 100, 1285–1289. [Google Scholar] [CrossRef]
- Murata, H.; Miyakawa, M.; Tanaka, I.; Taniguchi, T. Stability of 12CaO·7Al2O3 crystal under high-pressure: Experimental and first-principles approaches. Proc. Mater. Trans. 2015, 56, 1350–1353. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, Y.; Wang, H.; Cui, Q.; Wang, C.; Ma, Y.; Zou, G. Pressure-induced amorphization in mayenite (12CaO·7Al2O3). J. Chem. Phys. 2011, 135, 094506. [Google Scholar] [CrossRef]
- Lazic, B.; Kahlenberg, V.; Konzett, J. Structural studies on a stuffed framework high pressure polymorph of CaAl2O4. Z. Kristallogr. 2007, 222, 690–695. [Google Scholar] [CrossRef]
- Lazić, B.; Kahlenberg, V.; Konzett, J.; Kaindl, R. On the polymorphism of CaAl2O4-structural investigations of two high pressure modifications. Solid State Sci. 2006, 8, 589–597. [Google Scholar] [CrossRef]
- Kahlenberg, V.; Fischer, R.X.; Shaw, C.S.J. Rietveld analysis of dicalcium aluminate (Ca2Al2O5)-A new high pressure phase with the Brownmillerite-type structure. Am. Miner. 2000, 85, 1061–1065. [Google Scholar] [CrossRef]
- Kahlenberg, V.; Fischer, R.X.; Shaw, C.S.J. High-pressure Ca4Al6O13: An example of a calcium aluminate with three different types of coordination polyhedra for aluminum. Am. Miner. 2000, 85, 1492–1496. [Google Scholar] [CrossRef]
- Marchenko, E.I.; Oganov, A.R.; Mazhnik, E.A.; Eremin, N.N. Stable compounds in the CaO-Al2O3 system at high pressures. Phys. Chem. Miner. 2022, 49, 44. [Google Scholar] [CrossRef]
- Tangpakonsab, P.; Banlusan, K.; Moontragoon, P.; Namuangruk, S.; Amornkitbamrung, V.; Kaewmaraya, T. Electronic structures and optical properties of nanoporous complex oxide 12CaO·7Al2O3 (C12A7) under high pressure. Comp. Mater. Sci. 2021, 194, 110456. [Google Scholar] [CrossRef]
- Kapishnikov, A.V.; Kenzhin, R.M.; Koskin, A.P.; Volodin, A.M.; Geydt, P.V. Mayenite Synthesis from Hydroxide Precursors: Structure Formation and Active Sites on Its Surface. Materials 2022, 15, 778. [Google Scholar] [CrossRef]
- Chepurov, A.; Zhimulev, E.; Chepurov, A.; Sonin, V. Where did the largest diamonds grow? The experiments on percolation of Fe-Ni melt through olivine matrix in the presence of hydrocarbons. Lithos 2021, 404–405, 106437. [Google Scholar] [CrossRef]
- Chepurov, A.; Sonin, V.; Dereppe, J.M.; Zhimulev, E.; Chepurov, A. How do diamonds grow in metal melt together with silicate minerals? An experimental study of diamond morphology. Eur. J. Miner. 2020, 32, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Chepurov, A.I.; Fedorov, I.I.; Sonin, V.M. Experimental studies of diamond formation at high PT-parameters (supplement to the model for natural diamond formation). Russ. Geol. Geophys. 1998, 39, 240–249. [Google Scholar]
- Panchenko, A.V.; Tolstykh, N.D.; Gromilov, S.A. The technique of X-ray diffraction investigation of crystal aggregates. J. Struct. Chem. 2014, 55, 1209–1214. [Google Scholar] [CrossRef]
- Yelisseyev, A.P.; Afanasiev, V.P.; Panchenko, A.V.; Gromilov, S.A.; Kaichev, V.V.; Saraev, A.A. Yakutites: Are they impact diamonds from the Popigai crater? Lithos 2016, 265, 278–291. [Google Scholar] [CrossRef]
- Yelisseyev, A.; Khrenov, A.; Afanasiev, V.; Pustovarov, V.; Gromilov, S.; Panchenko, A.; Pokhilenko, N.; Litasov, K. Luminescence of natural carbon nanomaterial: Impact diamonds from the Popigai crater. Diam. Relat. Mat. 2015, 58, 69–77. [Google Scholar] [CrossRef]
- Prescher, C.; Prakapenka, V.B. DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 2015, 35, 223–230. [Google Scholar] [CrossRef]
- International Centre for Diffraction Data. Powder Diffraction File: PDF-2; Release 2009; International Centre for Diffraction Data: Newtown Square, PA, USA, 2009. [Google Scholar]
- Inorganic Crystal Structure Database/ICSD. D–1754 Eggenstein–Leopoldshafen; Release 2018; Fashinformationszentrum: Karlsruhe, Germany, 2018. [Google Scholar]
- Boysen, H.; Lerch, M.; Stys, A.; Senyshyn, A. Structure and oxygen mobility in mayenite (Ca12Al14O33): A high-temperature neutron powder diffraction study. Acta Crystallogr. B Struct. Sci. 2007, 63, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Matovic, B.; Prekajski, M.; Pantic, J.; Brauniger, T.; Rosic, M.; Zagorac, D.; Milivojevic, D. Synthesis and densification of single-phase mayenite (C12A7). J. Eur. Ceram. Soc. 2016, 36, 4237–4241. [Google Scholar] [CrossRef]
- Matsuishi, S.; Nomura, T.; Hirano, M.; Kodama, K.; Shamoto, S.; Hosono, H. Direct Synthesis of Powdery Inorganic Electride Ca24Al28O644+ e−4 and Determination of Oxygen Stoichiometry. Chem. Mater. 2009, 21, 2589–2591. [Google Scholar] [CrossRef]
- Salasin, J.R.; Schwerzler, S.E.A.; Mukherjee, R.; Keffer, D.J.; Sickafus, K.E.; Rawn, C.J. Direct Formation and Structural Characterization of Electride C12A7. Materials 2019, 12, 84. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gromilov, S.A.; Chepurov, A.I.; Volodin, A.M.; Vedyagin, A.A. Solid-State Transformations of Mayenite and Core-Shell Structures of C12A7@C Type at High Pressure, High Temperature Conditions. Materials 2023, 16, 2083. https://doi.org/10.3390/ma16052083
Gromilov SA, Chepurov AI, Volodin AM, Vedyagin AA. Solid-State Transformations of Mayenite and Core-Shell Structures of C12A7@C Type at High Pressure, High Temperature Conditions. Materials. 2023; 16(5):2083. https://doi.org/10.3390/ma16052083
Chicago/Turabian StyleGromilov, Sergey A., Anatoly I. Chepurov, Alexander M. Volodin, and Aleksey A. Vedyagin. 2023. "Solid-State Transformations of Mayenite and Core-Shell Structures of C12A7@C Type at High Pressure, High Temperature Conditions" Materials 16, no. 5: 2083. https://doi.org/10.3390/ma16052083
APA StyleGromilov, S. A., Chepurov, A. I., Volodin, A. M., & Vedyagin, A. A. (2023). Solid-State Transformations of Mayenite and Core-Shell Structures of C12A7@C Type at High Pressure, High Temperature Conditions. Materials, 16(5), 2083. https://doi.org/10.3390/ma16052083