The Ionization of Polymeric Materials Accelerates Protein Deposition on Hydrogel Contact Lens Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurement of Protein Deposition on Contact Lens
2.3. Measurement of Zeta Potential of Lysozyme and BSA
2.4. Measurement of PZC of Contact Lens
2.5. Measurement of Hydrooxyl Group Content of Contact Lens
2.6. Statistical Analysis
3. Results and Discussion
3.1. Protein Deposition on Contact Lens
3.2. Zeta Potential of HEWL and BSA
3.3. Point of Zero Charge of Contact Lens
3.4. Hydroxyl Group Content of Contact Lens
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garrett, Q.; Chatelier, R.C.; Griesser, H.J.; Milthorpe, B.K. Effect of charged groups on the adsorption and penetration of proteins onto and into carboxymethylated poly (HEMA) hydrogels. Biomaterials 1998, 19, 2175–2186. [Google Scholar] [CrossRef]
- Nicolson, P.C.; Vogt, J. Soft contact lens polymers: An evolution. Biomaterials 2001, 22, 3273–3283. [Google Scholar] [CrossRef]
- Castillo, E.J.; Koenig, J.L.; Anderson, J.M. Characterization of protein adsorption on soft contact lenses: IV. Comparison of in vivo spoilage with the in vitro adsorption of tear proteins. Biomaterials 1986, 7, 89–96. [Google Scholar] [CrossRef]
- Gachon, A.M.; Bilbault, T.; Dastugue, B. Protein migration through hydrogels: A tool for measuring porosity—Application to hydrogels used as contact lenses. Anal. Biochem. 1986, 157, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Garrett, Q.; Garrett, R.W.; Milthorpe, B.K. Lysozyme sorption in hydrogel contact lenses. Investig. Ophthalmol. Vis. Sci. 1999, 40, 897–903. [Google Scholar]
- Garrett, Q.; Laycock, B.; Garrett, R.W. Hydrogel lens monomer constituents modulate protein sorption. Investig. Ophthalmol. Vis. Sci. 2000, 41, 1687–1695. [Google Scholar]
- Soltys-Robitaille, C.E.; Ammon, D.M., Jr.; Valint, P.L., Jr.; Grobe, G.L., III. The relationship between contact lens surface charge and in-vitro protein deposition levels. Biomaterials 2001, 22, 3257–3260. [Google Scholar] [CrossRef]
- Lord, M.S.; Stenzel, M.H.; Simmons, A.; Milthorpe, B.K. The effect of charged groups on protein interactions with poly (HEMA) hydrogels. Biomaterials 2006, 27, 567–575. [Google Scholar] [CrossRef]
- Green-Church, K.B.; Nichols, J.J. Mass spectrometry-based proteomic analyses of contact lens deposition. Mol. Vis. 2008, 14, 291–297. [Google Scholar]
- Kramann, C.; Boehm, N.; Lorenz, K.; Wehrwein, N.; Stoffelns, B.M.; Pfeiffer, N.; Grus, F.H. Effect of contact lenses on the protein composition in tear film: A ProteinChip study. Graefes Arch. Clin. Exp. Ophthalmol. 2011, 249, 233–243. [Google Scholar] [CrossRef]
- Omali, N.B.; Zhao, Z.; Zhu, H.; Tilia, D.; Willcox, M.D. Quantification of individual proteins in silicone hydrogel contact lens deposits. Mol. Vis. 2013, 19, 390–399. [Google Scholar] [PubMed]
- Omali, N.B.; Subbaraman, L.N.; Coles-Brennan, C.; Fadli, Z.; Jones, L.W. Biological and clinical implications of lysozyme deposition on soft contact lenses. Optom. Vis. Sci. 2015, 92, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Korogiannaki, M.; Rastegari, B.; Zhang, J.; Chen, M.; Fu, Q.; Sheardown, H.; Filipe, C.D.; Hoare, T. ‘Click’ chemistry-tethered hyaluronic acid-based contact lens coatings improve lens wettability and lower protein adsorption. ACS Appl. Mater. Interfaces 2016, 8, 22064–22073. [Google Scholar] [CrossRef]
- Rabiah, N.I.; Scales, C.W.; Fuller, G.G. The influence of protein deposition on contact lens tear film stability. Colloids Surf. B Biointerfaces 2019, 180, 229–236. [Google Scholar] [CrossRef]
- Sillero, A.; Ribeiro, J.M. Isoelectric points of proteins: Theoretical determination. Anal. Biochem. 1989, 179, 319–325. [Google Scholar] [CrossRef]
- Babić, M.M.; Antić, K.M.; Vuković, J.S.J.; Božić, B.Đ.; Davidović, S.Z.; Filipović, J.M.; Tomić, S.L. Oxaprozin/poly (2-hydroxyethyl acrylate/itaconic acid) hydrogels: Morphological, thermal, swelling, drug release and antibacterial properties. J. Mater. Sci. 2015, 50, 906–922. [Google Scholar] [CrossRef]
- Gulicovski, J.J.; Čerović, L.S.; Milonjić, S.K. Point of zero charge and isoelectric point of alumina. Mater. Manuf. Process. 2008, 23, 615–619. [Google Scholar] [CrossRef]
- Taddei, P.; Balducci, F.; Simoni, R.; Monti, P. Raman, IR and Thermal Study of a New Highly Biocompatible Phosphorylcholine-Based Contact Lens. J. Mol. Struct. 2005, 744, 507–514. [Google Scholar] [CrossRef]
- Serjeant, E.P.; Dempsey, B. Ionisation Constants of Organic Acids in Aqueous Solution; IUPAC Chemical Data Series; Pergamon: New York, NY, USA, 1979; Volume 23. [Google Scholar]
- Efron, N.; Maldonado-Codina, C. Comprehensive Biomaterials, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 686–714. [Google Scholar] [CrossRef]
- Norn, M.S. Tear Fluid pH in Normals, Contact Lens Wearers, and Pathological Cases. Acta. Ophthalmol. 1988, 66, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Coles, W.H.; Jaros, P.A. Dynamics of Ocular Surface pH. Brit. J. Ophthalmol. 1984, 68, 549. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Upadhyay, P.; Mishra, M.; Srividya, M.; Akshara, M.R.; Kamali, N.; Zaidi, Z.S.; Iqbal, S.F.; Misra, S.K. Advances in Chemistry and Composition of Soft Materials for Drug Releasing Contact Lenses. Rsc. Adv. 2020, 10, 36751–36777. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Uehara, Y.; Matsuda, T.; Kiyama, R.; Li, L.; Ahmed, J.; Katsuyama, Y.; Nonoyama, T.; Kurokawa, T. Surface Charge Dominated Protein Absorption on Hydrogels. Soft Matter 2020, 16, 1897–1907. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Choi, M. Binding Affinity of Benzalkonium Chloride on Contact Lens Surfaces and the Effects on Their Physical Properties. Colloids Surf. B Biointerfaces 2021, 203, 111744. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Choi, M. Equilibrium Study of Copper Absorption to Different Types of Soft Contact Lens. Appl. Biol. Chem. 2017, 60, 215–219. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, M.; Hu, X.; Wang, X.; Niu, J.; Ma, T. Adsorption of Cationic Dyes on a Cellulose-Based Multicarboxyl Adsorbent. J. Chem. Eng. Data. 2013, 58, 413–421. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, J.; Wang, Y.; Liu, Q.; Zhong, Y.; Wang, Y.; Li, L.; Lincoln, S.F.; Guo, X. Preparation of a Poly(Acrylic Acid) Based Hydrogel with Fast Adsorption Rate and High Adsorption Capacity for the Removal of Cationic Dyes. Rsc. Adv. 2019, 9, 21075–21085. [Google Scholar] [CrossRef] [Green Version]
- Musgrave, C.S.A.; Fang, F. Contact Lens Materials: A Materials Science Perspective. Materials 2019, 12, 261. [Google Scholar] [CrossRef] [Green Version]
- Alderton, G.; Ward, W.H.; Fevold, H.L. Isolation of lysozyme from egg white. J. Biol. Chem. 1945, 157, 43–58. [Google Scholar] [CrossRef]
- Trivedi, V.D.; Raman, B.; Rao, C.M.; Ramakrishna, T. Co-refolding denatured-reduced hen egg white lysozyme with acidic and basic proteins. FEBS Lett. 1997, 418, 363–366. [Google Scholar] [CrossRef] [Green Version]
- Rezwan, K.; Meier, L.P.; Rezwan, M.; Vörös, J.; Textor, M.; Gauckler, L.J. Bovine serum albumin adsorption onto colloidal Al2O3 particles: A new model based on zeta potential and UV-vis measurements. Langmuir 2004, 20, 10055–10061. [Google Scholar] [CrossRef]
- Sari, S.M.C.; Benmouna, M.; Mahlous, M.; Kaci, M. Swelling behavior of poly (2-hydroxyethyl methacrylate) copolymer gels. MATEC Web Conf. 2013, 5, 04008. [Google Scholar] [CrossRef] [Green Version]
Proprietary Name | 1-Day ACUVUE® MOIST | SofLens Daily Disposable |
---|---|---|
Manufacturer | Johnson & Johnson Vision Care | Bausch + Lomb Inc. |
FDA Group | Ⅳ | Ⅱ |
USAN * | etafilcon A | hilafilcon B |
Principal monomers † | HEMA–MAA + PVP | HEMA + NVP |
Water content (%) | 58 | 59 |
Contact Lens Material | Protein | pH | n | Mean Rank | χ2 | p-Value |
---|---|---|---|---|---|---|
etafilcon A | HEWL | 6.2 | 3 | 2.00 | 14.848 | 0.011 * |
6.6 | 3 | 5.00 | ||||
7.0 | 3 | 10.67 | ||||
7.4 | 3 | 17.00 | ||||
7.8 | 3 | 10.33 | ||||
8.2 | 3 | 12.00 | ||||
BSA | 6.2 | 3 | 2.67 | 6.474 | 0.263 | |
6.6 | 3 | 10.67 | ||||
7.0 | 3 | 11.67 | ||||
7.4 | 3 | 12.00 | ||||
7.8 | 3 | 9.00 | ||||
8.2 | 3 | 11.00 | ||||
hilafilcon B | HEWL | 6.2 | 3 | 2.33 | 10.544 | 0.061 |
6.6 | 3 | 9.33 | ||||
7.0 | 3 | 7.33 | ||||
7.4 | 3 | 13.67 | ||||
7.8 | 3 | 14.67 | ||||
8.2 | 3 | 9.67 | ||||
BSA | 6.2 | 3 | 7.00 | 7.550 | 0.183 | |
6.6 | 3 | 10.67 | ||||
7.0 | 3 | 15.00 | ||||
7.4 | 3 | 11.33 | ||||
7.8 | 3 | 9.00 | ||||
8.2 | 3 | 4.00 |
Contact Lens Material | pH | n | Mean Rank | χ2 | p-Value |
---|---|---|---|---|---|
etafilcon A | 6.2 | 3 | 2.33 | 12.415 | 0.030 * |
6.6 | 3 | 5.00 | |||
7.0 | 3 | 10.00 | |||
7.4 | 3 | 11.67 | |||
7.8 | 3 | 14.67 | |||
8.2 | 3 | 13.33 | |||
hilafilcon B | 6.2 | 3 | 5.00 | 3.297 | 0.654 |
6.6 | 3 | 4.50 | |||
7.0 | 3 | 6.50 | |||
7.4 | 3 | 10.50 | |||
7.8 | 3 | 8.50 | |||
8.2 | 3 | 7.00 |
Contact Lens Material | pH | n | Mean Rank | χ2 | p-Value |
---|---|---|---|---|---|
etafilcon A | 6.2 | 3 | 2.00 | 15.019 | 0.010 * |
6.6 | 3 | 5.00 | |||
7.0 | 3 | 8.33 | |||
7.4 | 3 | 12.67 | |||
7.8 | 3 | 13.00 | |||
8.2 | 3 | 16.00 | |||
hilafilcon B | 6.2 | 3 | 2.00 | 12.798 | 0.025 * |
6.6 | 3 | 12.00 | |||
7.0 | 3 | 17.00 | |||
7.4 | 3 | 8.17 | |||
7.8 | 3 | 8.67 | |||
8.2 | 3 | 9.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.; Choi, M. The Ionization of Polymeric Materials Accelerates Protein Deposition on Hydrogel Contact Lens Material. Materials 2023, 16, 2119. https://doi.org/10.3390/ma16052119
Ahn J, Choi M. The Ionization of Polymeric Materials Accelerates Protein Deposition on Hydrogel Contact Lens Material. Materials. 2023; 16(5):2119. https://doi.org/10.3390/ma16052119
Chicago/Turabian StyleAhn, Jihye, and Moonsung Choi. 2023. "The Ionization of Polymeric Materials Accelerates Protein Deposition on Hydrogel Contact Lens Material" Materials 16, no. 5: 2119. https://doi.org/10.3390/ma16052119
APA StyleAhn, J., & Choi, M. (2023). The Ionization of Polymeric Materials Accelerates Protein Deposition on Hydrogel Contact Lens Material. Materials, 16(5), 2119. https://doi.org/10.3390/ma16052119