The Effect of Novel Complex Treatment of Annealing and Sandblasting on the Microstructure and Performance of Welded TA1 Titanium Plate
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Welded Microstructure of Titanium Plate
3.2. Annealed Microstructure of Titanium Plate
3.3. Mechanical Performance and Microhardness of Annealed Titanium Plate
3.4. Sandblasting Microstructure of Titanium Plate
3.5. Microhardness of Each Area after Sand Blasting
3.6. Grain Size Grade of Weld Zone under Different Processes
3.7. Morphology Comparison of the Electrolytic Copper Foil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, M.; Li, J.; Liu, K.; Qi, W.; Li, J. Mechanical property and characterization of TA1 titanium alloy plates welded by vacuum electron beam welding. Vacuum 2018, 159, 315–318. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, X.; Cai, Y.; Lu, L.; Xin, Y.; Jia, D.; Tian, Y.; Han, J. Microstructure and mechanical properties of Ti-3Al-2V alloy by dual wire + arc additive manufacturing. Mater. Lett. 2021, 299, 130109. [Google Scholar] [CrossRef]
- Wagner, F.; Bozzolo, N.; Landuyt, O.; Grosdidier, T. Evolution of re-crystallisation texture and microstructure in low alloyed titanium plates. Acta Mater. 2002, 50, 1245–1259. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Xu, Y.; Zhou, J. The butt of CP-Ti/304 stainless steel and CP-Ti/T2 bimetallic plates using laser-induction heating welding technology. Mater. Lett. 2022, 307, 131054. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Qi, J.; Zou, Z.; Qian, Y. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Additive Manufactured Ti-6.5Al-2Zr-1Mo-1V Alloy. Materials 2023, 16, 160. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Z.Z.S.; Yang, G. The Hydride Precipitation Mechanisms in the Hydrogenated Weld Zone of Ti–0.3Mo–0.8Ni Alloy Argon-Arc Welded Joints. Adv. Eng. Mater. 2018, 20, 1700679. [Google Scholar] [CrossRef]
- Ye, Y.; Lu, Z.; Nieh, T. Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropyalloy. Scr. Mater. 2017, 130, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Xin, C.; Wang, Q.; Ren, J.; Zhang, Y.; Zhang, L.; Sang, B.; Li, L. Influence of Grain Size and Its Distribution on Charpy Impact Properties of TA3 Alloy. Materials 2022, 15, 8537. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, H.; Ma, T.; Yang, C.; Chen, Z. Influence of Parent Metal Microstructure and Post-Weld Heat Treatment on Microstructure and Mechanical Properties of Linear Friction Welded Ti-6Al-4V Joint. Adv. Eng. Mater. 2012, 14, 312–318. [Google Scholar] [CrossRef]
- Yoshihara, S.; Yamamoto, H.; Manabe, K. Formability enhancement in magnesium alloy deep drawing by local heating and cooling tech-nique. J. Mater. Process. Tech. 2003, 142, 609–613. [Google Scholar] [CrossRef]
- Zhang, X.; He, X.; Xing, B.; Zhao, L.; Lu, Y.; Gu, F.; Ball, A. Influence of heat treatment on fatigue performances for self-piercing riveting similar and dissimilar titanium, aluminium and copper alloys. Mater. Des. 2016, 97, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Li, L.; Wang, Z. Study of the microstructure modulation and phase formation of TiAl3Ti laminated composites. Vacuum 2018, 157, 481–486. [Google Scholar] [CrossRef]
- Lu, L.; Tian, Y.; Cai, Y.; Xin, Y.; Chen, X.; Zhang, G.; Han, J. Microstructure and mechanical properties of a functionally graded material from TA1 to Inconel 625 fabricated by dual wire + arc additive manufacturing. Mater. Lett. 2021, 298, 130010. [Google Scholar] [CrossRef]
- Urbikain, G.; Perez, J.; de Lacalle, L.L.; Andueza, A. Combination of friction drilling and form tapping processes on dissimilar materials for making nutless joints. J. Manuf. Eng. 2018, 232, 1007–1020. [Google Scholar] [CrossRef]
- Andres, B.; Gorka, U.; Perez, J.; Pereira, O. Smart optimization of a friction-drilling process based on boosting ensembles. J. Manuf. Syst. 2018, 48, 108–121. [Google Scholar]
- Egea, A.S.; Rodriguez, A.; Celentano, D.; Calleja, A.; De Lacalle, L.L. Joining metrics enhancement when combining fsw and ball-burnishing in a 2050 aluminium alloy. Surf. Coat. Tech. 2019, 367, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, A.; de Lacalle, L.L.; Celaya, A.; Lamikiz, A.; Albizuri, J. Surface improvement of shafts by the deep ball-burnishing technique. Surf. Coat. Tech. 2012, 206, 2817–2824. [Google Scholar] [CrossRef]
- Yu, W.X.; Li, X.F.; Zhang, J.Y.; Hou, S.S.; Lv, Y.F. Dynamic Deformation Behavior and Fracture Characteristics of a near α TA31 Titanium Alloy at High Strain Rates. Materials 2022, 15, 7599. [Google Scholar] [CrossRef] [PubMed]
- Ou, P.; Cao, Z.Q.; Rong, J.; Yu, X.H. Molecular Dynamics Study on the Welding Behavior in Dissimilar TC4-TA17 Titanium Alloys. Materials 2022, 15, 5606. [Google Scholar] [CrossRef]
- Fu, H.; Jiang, J.W.; Men, J.B.; Gu, X.F. Microstructure Evolution and Deformation Mechanism of Tantalum–Tungsten Alloy Liner under Ultra-High Strain Rate by Explosive Detonation. Materials 2022, 15, 5252. [Google Scholar] [CrossRef]
Elements | C | H | N | O | Fe | Ti |
---|---|---|---|---|---|---|
Content | 0.007 | 0.0006 | 0.0015 | 0.032 | 0.029 | Balance |
Welding Parameters | Welding Current/A | Welding Voltage/V | Welding Speed/(cm·s−1) | Main Nozzle/(L·min−1) | Support Cover/(L·min−1) |
---|---|---|---|---|---|
120 | 23 | 0.5 | 20 | 12 |
Performance | Tensile Strength/MPa | Yield Strength / MPa | Elongation after Fracture/% | |
---|---|---|---|---|
Base material | 259 | 152.5 | 66.6 | |
welding | 279 | 183 | 20 | |
Annealing temperature/°C | 500 | 277 | 180 | 35 |
550 | 276 | 179 | 38 | |
600 | 275 | 175 | 40 | |
650 | 270 | 171 | 40 |
Process Parameters | Original Sample | 500 °C | 550 °C | 600 °C | 650 °C | 500 °C + Sandblasting | 550 °C + Sandblasting | 600 °C + Sandblasting | 650 °C + Sandblasting |
---|---|---|---|---|---|---|---|---|---|
grain size grade | 9 | 6 | 6.5 | 6.5 | 7 | 6.5 | 7 | 7.5 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Wang, D.; Li, M.; Hu, J.; An, X.; Wei, W. The Effect of Novel Complex Treatment of Annealing and Sandblasting on the Microstructure and Performance of Welded TA1 Titanium Plate. Materials 2023, 16, 2149. https://doi.org/10.3390/ma16062149
Xu Y, Wang D, Li M, Hu J, An X, Wei W. The Effect of Novel Complex Treatment of Annealing and Sandblasting on the Microstructure and Performance of Welded TA1 Titanium Plate. Materials. 2023; 16(6):2149. https://doi.org/10.3390/ma16062149
Chicago/Turabian StyleXu, Yanbin, Dayue Wang, Mingyen Li, Jing Hu, Xulong An, and Wei Wei. 2023. "The Effect of Novel Complex Treatment of Annealing and Sandblasting on the Microstructure and Performance of Welded TA1 Titanium Plate" Materials 16, no. 6: 2149. https://doi.org/10.3390/ma16062149
APA StyleXu, Y., Wang, D., Li, M., Hu, J., An, X., & Wei, W. (2023). The Effect of Novel Complex Treatment of Annealing and Sandblasting on the Microstructure and Performance of Welded TA1 Titanium Plate. Materials, 16(6), 2149. https://doi.org/10.3390/ma16062149