Assessment of Dynamic Surface Leaching of Monolithic Polymer Mortars Comprised of Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Epoxy-Resin Properties
2.2. Mineral Charges Characterization
2.3. Polymer Mortars Mix Design
2.4. The Batch Leaching Test NF EN 12457-2 on Granular Constituents of Polymer Mortars
2.5. Dynamic Surface Leaching Test on Polymer Mortar Samples
3. Results and Discussion
3.1. Batch Leaching Test Results on Granular Constituents
3.2. Dynamic Monolith Leaching Tests
3.2.1. Physicochemical Parameters: pH, Conductivity and Redox Potential
3.2.2. Sulfates, Chlorides and Fluorides Leaching
3.2.3. Leaching of Trace Elements
3.2.4. Conformity of Construction Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simón, D.; Battistessa, C.P.; Arduzzo, D.C.; Gass, S.; Cristóbal, A. Valorization of sludge from the effluent treatment of the dairy industry as clay substitutes in building bricks. Constr. Build. Mater. 2021, 307, 124955. [Google Scholar] [CrossRef]
- Mkaouar, S.; Maherzi, W.; Pizette, P.; Zaitan, H.; Benzina, M. A comparative study of natural Tunisian clay types in the formulation of compacted earth blocks. J. Afr. Earth Sci. 2019, 160, 103620. [Google Scholar] [CrossRef]
- Brahim, M.; Ndiaye, K.; Aggoun, S.; Maherzi, W. Valorization of Dredged Sediments in Manufacturing Compressed Earth Blocks Stabilized by Alkali-Activated Fly Ash Binder. Buildings 2022, 12, 419. [Google Scholar] [CrossRef]
- Yao, J.; Chu, S. Durability of sustainable marine sediment concrete. Dev. Built Environ. 2023, 13, 100118. [Google Scholar] [CrossRef]
- Amar, M.; Benzerzour, M.; Abriak, N.-E.; Mamindy-Pajany, Y. Study of the pozzolanic activity of a dredged sediment from Dunkirk harbour. Powder Technol. 2017, 320, 748–764. [Google Scholar] [CrossRef]
- Tang, C.-W.; Cheng, C.-K. Sustainable Use of Sludge from Industrial Park Wastewater Treatment Plants in Manufacturing Lightweight Aggregates. Materials 2022, 15, 1785. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-J.; Chen, P.-C.; Peng, C.-F.; Huang, C.-W. Production of Synthetic Lightweight Aggregates from Industrial Sludge. Materials 2022, 15, 4097. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-J.; Chen, Y.-C.; Tang, C.-W.; Lin, X.-F. The Corrosion Resistance of Reinforced Lightweight Aggregate Concrete in Strong Brine Environments. Materials 2022, 15, 7943. [Google Scholar] [CrossRef]
- Wei, Y.-L.; Yang, J.-C.; Lin, Y.-Y.; Chuang, S.-Y.; Wang, H.P. Recycling of harbor sediment as lightweight aggregate. Mar. Pollut. Bull. 2008, 57, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Zouch, A.; Mamindy-Pajany, Y.; Ennahal, I.; Abriak, N.-E.; Ksibi, M. An eco-friendly epoxy polymer binder for the treatment of Tunisian harbor sediments: Laboratory investigations for beneficial reuse. Waste Manag. Res. J. Sustain. Circ. Econ. 2020, 38, 876–885. [Google Scholar] [CrossRef]
- Mamindy-Pajany, Y. Contribution à la Gestion Environnementale des Sédiments Marins Non-Immergeables Provenant de Sites Portuaires: Approche Couplée (Géo) Chimie—Ecotoxicologie—Génie Civil. 2018. Available online: https://lilloa.univ-lille.fr/bitstream/handle/20.500.12210/18852/HDR_Mamindy_Pajany_Yannick.pdf?sequence=1 (accessed on 15 May 2022).
- Maherzi, W.; Ennahal, I.; Benzerzour, M.; Mammindy-Pajany, Y.; Abriak, N.-E. Study of the polymer mortar based on dredged sediments and epoxy resin: Effect of the sediments on the behavior of the polymer mortar. Powder Technol. 2020, 361, 968–982. [Google Scholar] [CrossRef]
- Ennahal, I.; Maherzi, W.; Benzerzour, M.; Mamindy, Y.; Abriak, N.-E. Performance of Lightweight Aggregates Comprised of Sediments and Thermoplastic Waste. Waste Biomass Valorization 2021, 12, 515–530. [Google Scholar]
- Ennahal, I.; Maherzi, W.; Mamindy-Pajany, Y.; Benzerzour, M.; Abriak, N.-E. Eco-friendly polymers mortar for floor covering based on dredged sediments of the north of France. J. Mater. Cycles Waste Manag. 2019, 21, 861–871. [Google Scholar] [CrossRef]
- Eikelboom, R.; Ruwiel, E.; Goumans, J. The building materials decree: An example of a Dutch regulation based on the potential impact of materials on the environment. Waste Manag. 2001, 21, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Suer, P.; Wik, O.; Erlandsson, M. Reuse and recycle—Considering the soil below constructions. Sci. Total Environ. 2014, 485–486, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Overmann, S.; Xiaochen, L.; Anya, V. Investigations on the leaching behavior of fresh concrete–A review. Constr. Build. Mater. 2021, 272, 121390. [Google Scholar] [CrossRef]
- Lia, W.; Pfingsten, J.; Eickhoff, H.; Geist, I.; Hilbig, H.; Hornig, U.; Kalbe, U.; Krause, K.; Kautetzky, D.; Linnemann, V.; et al. Improving consistency at testing cementitious materials in the Dynamic Surface Leaching Test on the basis of the European technical specification CEN/TS 16637–2–Results of a round robin test. J. Environ. Manag. 2022, 314, 114959. [Google Scholar]
- Paulus, H.; Schick, J.; Poirier, J.-E. Assessment of dynamic surface leaching of monolithic surface road materials. J. Environ. Manag. 2016, 176, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Lecomte, T. Évaluation Environnementale des Sédiments de Dragage et de Curage Dans la Perspective de Leur Valorisation dans le Domaine du Génie Civil. 2018. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiBksawla39AhWTFogKHZbXCkcQFnoECBYQAQ&url=http%3A%2F%2Fwww.theses.fr%2F2018LILUI032&usg=AOvVaw3dXQ1FQhhuBuzRT53UZUXi (accessed on 15 December 2022).
- Regeling Bodemkwaliteit. Available online: https://wetten.overheid.nl/BWBR0023085/2020-06-09 (accessed on 23 September 2020).
- Crucho, J.; Luís, P.-S.; José, N. Cement-treated pavement layers incorporating construction and demolition waste and coconut fibres: A review. Int. J. Pavement Eng. 2022, 14, 4877–4896. [Google Scholar] [CrossRef]
- Sun, Z.; Vollpracht, A. Leaching of monolithic geopolymer mortars. Cem. Concr. Res. 2020, 136, 106161. [Google Scholar] [CrossRef]
Proportions of the Mixture | 1 Part of Hardener: 2 Parts of Basic Solution (by Weight) |
---|---|
Density | 1.1 g/cm3 |
Hardness Shore D | 70–75 |
Hardness of the core | 70–75 N/mm2 at 14 days |
Heat resistance | +40 °C to +45 °C |
Operating temperature | +10 °C to +30 °C |
Viscosity | 1000–1200 mPa·s |
Characteristics | Standards | Sediment |
---|---|---|
Density (Kg/m3) | NF EN 1097-7 | 2610 |
Methylene blue value (g/100 g of dry matter) | NF P 94-068 | 0.53 |
Organic matter content (%) at 450 °C | XP P94-047 | 4.2 |
BET Surface (m2/g) | NF EN ISO18757 | 11.01 |
Elements (%) | O | Na | Mg | Al | Si | P | S | Cl | K | Ca | Ti | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Content | 48.5 | 0.4 | 0.9 | 6.7 | 24.8 | 0.5 | 0.4 | Traces | 1.8 | 11.8 | 0.5 | 3.6 |
Mix | 30% Sediment and 70% Sand | 50% Sediment and 50% Sand | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Resin (%) | 12 | 14 | 16 | 18 | 20 | 25 | 12 | 14 | 16 | 18 | 20 | 25 |
Porosity (%) | 26.41 | 25.06 | 14.29 | 3.95 | 7.27 | 6.51 | 34.97 | 38.68 | 24.04 | 19.21 | 13.99 | 11.03 |
Water absorption (%) | 1.20 × 10−1 | 1.11 × 10−1 | 7.98 × 10−2 | 1.60 × 10−2 | 2.81 × 10−3 | 1.22 × 10−3 | 2.57 × 10−1 | 2.22 × 10−1 | 1.52 × 10−1 | 6.85 × 10−2 | 3.21 × 10−2 | 2.27 × 10−3 |
Density g/cm3 | 1556 | 1600 | 1600 | 1830 | 1890 | 1960 | 1400 | 1370 | 1450 | 1600 | 1730 | 1830 |
Parameters | Sediment | Sand | Inert Waste Threshold | Non-Hazardous Waste Threshold |
---|---|---|---|---|
As | <0.1 | <0.1 | 0.5 | 2 |
Ba | 3 | 0.03 | 20 | 100 |
Cd | <0.01 | <0.01 | 0.04 | 1 |
Cr | 0.02 | <0.01 | 0.5 | 10 |
Cu | 0.6 | <0.02 | 2 | 50 |
Mo | 0.1 | <0.05 | 0.5 | 10 |
Ni | 0.1 | <0.04 | 0.4 | 10 |
Pb | 0.1 | <0.02 | 0.5 | 10 |
Sb | 0.11 | <0.05 | 0.06 | 0.7 |
Se | 0.07 | <0.07 | 0.1 | 0.5 |
Zn | 1.0 | <0.03 | 4 | 50 |
chlorides | 36 | <10 | 800 | 15,000 |
fluorides | 20 | <5 | 10 | 150 |
sulfates | 270 | <10 | 1000 | 20,000 |
soluble fraction | 2837 | 358 | 4000 | 60,000 |
pH | 8.09 | 8.98 | - | >6 |
Conductivity (µS/cm) | 264 | 27.75 | - | - |
Formulations | 30% Sediment and 70% Sand | 50% Sediment and 50% Sand | SQD Leaching Limits | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Resin Rate (%) | 12 | 14 | 16 | 18 | 20 | 25 | 12 | 14 | 16 | 18 | 20 | 25 | ||
Parameters | Ba | 9.19 | 7.10 | 7.10 | 2.64 | 2.07– | 1.75 | 9.01 | 6.83 | 7.92 | 8.82 | 6.77 | 2.2 | 1500 |
Co | 7.87 | 9.54 | 8.35 | 1.5 | 1.8 | 1.7 | 16.16 | 12.53 | 8.2 | 5.37 | 1.77 | 1.43 | 60 | |
Cu | 28.0 | 28.5 | 27.4 | 4.2 | 11.2 | 4.2 | 31.4 | 32.4 | 21.1 | 8.43 | 3.22 | 4.14 | 98 | |
V | - | - | - | - | - | - | 1.99 | 1.84 | 1.15 | 0.93 | 0.43 | 0.38 | 320 | |
Sulfate | 994 | 954 | 1346 | 853 | 782.81– | 624.02– | 2050 | 1911 | 2669 | 2569 | 2376 | 944.28– | 165,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maherzi, W.; Ennahal, I.; Bouaich, F.Z.; Benzerzour, M.; Rais, Z.; Mamindy-Pajany, Y.; Abriak, N.-E. Assessment of Dynamic Surface Leaching of Monolithic Polymer Mortars Comprised of Wastes. Materials 2023, 16, 2150. https://doi.org/10.3390/ma16062150
Maherzi W, Ennahal I, Bouaich FZ, Benzerzour M, Rais Z, Mamindy-Pajany Y, Abriak N-E. Assessment of Dynamic Surface Leaching of Monolithic Polymer Mortars Comprised of Wastes. Materials. 2023; 16(6):2150. https://doi.org/10.3390/ma16062150
Chicago/Turabian StyleMaherzi, Walid, Ilyas Ennahal, Fatima Zahra Bouaich, Mahfoud Benzerzour, Zakia Rais, Yannick Mamindy-Pajany, and Nor-Edine Abriak. 2023. "Assessment of Dynamic Surface Leaching of Monolithic Polymer Mortars Comprised of Wastes" Materials 16, no. 6: 2150. https://doi.org/10.3390/ma16062150
APA StyleMaherzi, W., Ennahal, I., Bouaich, F. Z., Benzerzour, M., Rais, Z., Mamindy-Pajany, Y., & Abriak, N. -E. (2023). Assessment of Dynamic Surface Leaching of Monolithic Polymer Mortars Comprised of Wastes. Materials, 16(6), 2150. https://doi.org/10.3390/ma16062150