Revealing the Correlation between Molecular Structure and Corrosion Inhibition Characteristics of N-Heterocycles in Terms of Substituent Groups
Abstract
:1. Introduction
2. The Correlation between Molecular Structure and Corrosion Inhibition Characteristics of N-Heterocycles
2.1. The Influence of Alkyl Chain Length
- (1)
- When the active group is adsorbed on the metal surface, the longer alkyl chain can increase the coverage and compactness of the corrosion inhibition film. At this time, there are few cavities between the corrosion inhibition films, and the free volume fraction of the corrosion substance is small, slowing down the diffusion coefficient of corrosive ions and increase the corrosion inhibition ability;
- (2)
- Due to its electron-donating characteristic, the alkyl chain can change the electron density of the parent body, thereby changing the overall adsorption energy. Therefore, the longer alkyl chain can increase the corrosion inhibitor’s interaction energy with metals, resulting in better corrosion inhibition performance;
- (3)
- The longer alkyl chain has greater hydrophobicity, preventing the approach of corrosive ions in water.
2.2. The Influence of Electron-Withdrawing and Electron-Donating Groups
- (1)
- Electron-donating and electron-withdrawing groups affect the adsorption capacity by changing the overall electron density. When the adsorption energy and adsorption area are reduced, the corrosion inhibition ability is also reduced;
- (2)
- When the molecular volume of the N-heterocycles is large or very small, the presence of the substituent was negligible for changing the electron distribution of the entire molecule. The addition of electron-donating and electron-withdrawing groups directly changes the number of adsorption sites, at which point the electron-rich heteroatomic centers are directly involved in binding to the metal surface. These electron-rich centers transfer their non-bonded and π electrons to the d orbitals of atoms on the metal surface, forming coordination bonds. At this time, both the electron donating and electron-withdrawing groups increase the corrosion inhibition performance of the compound;
- (3)
- In addition, when the substituent changes the hydrophobicity of the entire molecule, the corrosion inhibition efficiency will be affected as well due to the change in solubility of the N-heterocycles. On the one hand, highly hydrophilic compounds may be solvated and cannot adsorb on metal surfaces. On the other hand, highly hydrophobic compounds precipitate due to insoluble polar electrolytes. Both high hydrophilicity and high hydrophobicity will reduce the corrosion inhibition efficiency of the compounds;
- (4)
- Besides, the corrosive medium and material of the metal also have a great influence on the corrosion inhibition effect of the compound; therefore, the effect should be discussed according to the specific situation of practical application.
2.3. The Influence of Halogen Substituent Group
3. The Toxicity and Biodegradability of N-Heterocycles
4. Conclusions and Outlook
- (1)
- Under the premise of solubility, the longer the alkyl chain, the stronger the corrosion inhibition ability of N-heterocycles. The alkyl substituent mainly affects the overall anti-corrosion ability by controlling the coverage, density and cavity of the corrosion protection film formed, the adsorption energy and the diffusion coefficient of corrosive ions. Long-chain alkyl substituents with high hydrophobicity increase the distance and difficulty for the corrosive medium to reach the metal;
- (2)
- The effect of electron-donating groups and electron-withdrawing groups on the corrosion resistance of N-heterocycles cannot be generalized. In some cases, both electron-donating and electron-withdrawing groups can increase the corrosion inhibition ability of the compound. The electron-donating and electron-withdrawing substituents mainly change the electronic structure of the N-heterocycle and the active site for adsorption, thereby changing the adsorption capacity of the compound and affecting the formation of an adsorption film and the blocking of corrosive media;
- (3)
- The influence of a halogen substituent mainly depends on its electronegativity. The overall corrosion inhibition ability of N-heterocycles is negatively correlated with the electronegativity of halogen substituent. The halogen substituents will consume the electron density of N-heterocycles, thereby affecting the overall electron cloud and adsorption capacity, and the dissociated halogen ions may become a new corrosion medium and cause pitting corrosion.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Wu, J.; Zhang, C.Y.; Zhang, S.D.; Yang, B.J.; Emori, W.; Wang, J.Q. Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution. J. Alloys Compd. 2020, 819, 152943. [Google Scholar] [CrossRef]
- Loto, R.; Joseph, O.; Olaitan, A. Electrochemical corrosion behaviour of austenitic stainless steel (type 304) in dilute hydrochloric acid solution. J. Mater. Environ. Sci. 2015, 6, 2409–2417. [Google Scholar]
- Tourabi, M.; Nohair, K.; Traisnel, M.; Jama, C.; Bentiss, F. Electrochemical and XPS studies of the corrosion inhibition of carbon steel in hydrochloric acid pickling solutions by 3,5-bis(2-thienylmethyl)-4-amino-1,2,4-triazole. Corros. Sci. 2013, 75, 123–133. [Google Scholar] [CrossRef]
- Eduok, U.; Ohaeri, E.; Szpunar, J. Conversion of Imidazole to N-(3-Aminopropyl)imidazole toward Enhanced Corrosion Protection of Steel in Combination with Carboxymethyl Chitosan Grafted Poly(2-methyl-1-vinylimidazole). Ind. Eng. Chem. Res. 2019, 58, 7179–7192. [Google Scholar] [CrossRef]
- Kahyarian, A.; Schumaker, A.; Brown, B.; Nesic, S. Acidic corrosion of mild steel in the presence of acetic acid: Mechanism and prediction. Electrochim. Acta 2017, 258, 639–652. [Google Scholar] [CrossRef]
- Yan, Y.; Li, W.; Cai, L.; Hou, B. Electrochemical and quantum chemical study of purines as corrosion inhibitors for mild steel in 1M HCl solution. Electrochim. Acta 2008, 53, 5953–5960. [Google Scholar] [CrossRef]
- Andreeva, D.V.; Skorb, E.V.; Shchukin, D.G. Layer-by-Layer Polyelectrolyte/Inhibitor Nanostructures for Metal Corrosion Protection. ACS Appl. Mater. Interfaces 2010, 2, 1954–1962. [Google Scholar] [CrossRef]
- Mansfeld, F.; Jeanjaquet, S.L. The evaluation of corrosion protection measures for metal matrix composites. Corros. Sci. 1986, 26, 727–734. [Google Scholar] [CrossRef]
- Lauria, D.; Pagano, M.; Petrarca, C.; Pisani, C. A Novel Approach to Design Cathodic Protection System for High-Voltage Transmission Cables. IEEE Trans. Ind. Appl. 2015, 51, 5415–5420. [Google Scholar] [CrossRef] [Green Version]
- Hwang, M.-J.; Kim, M.-G.; Kim, S.; Kim, Y.C.; Seo, H.W.; Cho, J.K.; Park, I.-K.; Suhr, J.; Moon, H.; Koo, J.C.; et al. Cathodic electrophoretic deposition (EPD) of phenylenediamine-modified graphene oxide (GO) for anti-corrosion protection of metal surfaces. Carbon 2019, 142, 68–77. [Google Scholar] [CrossRef]
- Wessling, B.; Posdorfer, J. Nanostructures of the dispersed organic metal polyaniline responsible for macroscopic effects in corrosion protection. Synth. Met. 1999, 102, 1400–1401. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A. Recent progresses in Schiff bases as aqueous phase corrosion inhibitors: Design and applications. Coord. Chem. Rev. 2021, 446, 214105. [Google Scholar] [CrossRef]
- Quadri, T.W.; Olasunkanmi, L.O.; Fayemi, O.E.; Akpan, E.D.; Verma, C.; Sherif, E.-S.M.; Khaled, K.F.; Ebenso, E.E. Quantitative structure activity relationship and artificial neural network as vital tools in predicting coordination capabilities of organic compounds with metal surface: A review. Coord. Chem. Rev. 2021, 446, 214101. [Google Scholar] [CrossRef]
- Rani, B.E.A.; Basu, B.B.J. Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview. Int. J. Corros. 2011, 2012, 380217. [Google Scholar] [CrossRef]
- Costa, S.N.; Almeida-Neto, F.W.Q.; Campos, O.S.; Fonseca, T.S.; de Mattos, M.C.; Freire, V.N.; Homem-de-Mello, P.; Marinho, E.S.; Monteiro, N.K.V.; Correia, A.N.; et al. Carbon steel corrosion inhibition in acid medium by imidazole-based molecules: Experimental and molecular modelling approaches. J. Mol. Liq. 2021, 326, 115330. [Google Scholar] [CrossRef]
- Gopi, D.; Sherif, E.-S.M.; Surendiran, M.; Jothi, M.; Kumaradhas, P.; Kavitha, L. Experimental and theoretical investigations on the inhibition of mild steel corrosion in the ground water medium using newly synthesised bipodal and tripodal imidazole derivatives. Mater. Chem. Phys. 2014, 147, 572–582. [Google Scholar] [CrossRef]
- John, S.; Joseph, A.; Sajini, T.; James Jose, A. Corrosion inhibition properties of 1,2,4-Hetrocyclic Systems: Electrochemical, theoretical and Monte Carlo simulation studies. Egypt. J. Pet. 2017, 26, 721–732. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Zhang, J.; Qiao, G.; Yan, Y.; Ti, Y.; Zhang, Y. Effect of alkyl chain length on inhibition performance of imidazoline derivatives investigated by molecular dynamics simulation. Mater. Corros.-Werkst. Und Korros. 2013, 64, 225–230. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, X.; Zhang, Y.; Wang, P.; Cao, X.; Zhang, J. Molecular dynamics simulation of corrosive species diffusion in imidazoline inhibitor films with different alkyl chain length. Corros. Sci. 2013, 73, 123–129. [Google Scholar] [CrossRef]
- Verma, C.; Ebenso, E.E.; Quraishi, M.A. Molecular structural aspects of organic corrosion inhibitors: Influence of –CN and –NO2 substituents on designing of potential corrosion inhibitors for aqueous media. J. Mol. Liq. 2020, 316, 113874. [Google Scholar] [CrossRef]
- Verma, C.; Olasunkanmi, L.O.; Ebenso, E.E.; Quraishi, M.A. Substituents effect on corrosion inhibition performance of organic compounds in aggressive ionic solutions: A review. J. Mol. Liq. 2018, 251, 100–118. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Ebenso, E.E. Quinoline and its derivatives as corrosion inhibitors: A review. Surf. Interfaces 2020, 21, 100634. [Google Scholar] [CrossRef]
- Ser, C.T.; Žuvela, P.; Wong, M.W. Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships. Appl. Surf. Sci. 2020, 512, 145612. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, S.; Qiang, Y.; Xu, S.; Tan, B.; Chen, S. The synergistic corrosion inhibition study of different chain lengths ionic liquids as green inhibitors for X70 steel in acidic medium. Mater. Chem. Phys. 2018, 215, 229–241. [Google Scholar] [CrossRef]
- Ontiveros-Rosales, M.; Espinoza-Vazquez, A.; Gomez, F.; Valdez-Rodriguez, S.; Miralrio, A.; Acosta-Garcia, B.; Castro, M. Imidazolate of 1-butyl-3-ethyl imidazole as corrosion inhibitor on API 5L X52 steel in NaCl saturated with CO2. J. Mol. Liq. 2022, 363, 119826. [Google Scholar] [CrossRef]
- Galai, M.; Rbaa, M.; El Kacimi, Y.; Ouakki, M.; Dkhirech, N.; Touir, R.; Lakhrissi, B.; Touhami, M. Anti-corrosion Properties of some Triphenylimidazole Substituted Compounds in Corrosion Inhibition of Carbon Steel in 1.0 M Hydrochloric Acid Solution. Anal. Bioanal. Electrochem. 2017, 9, 80–101. [Google Scholar]
- Milošev, I.; Zimerl, D.; Carriére, C.; Zanna, S.; Seyeux, A.; Iskra, J.; Stavber, S.; Chiter, F.; Poberžnik, M.; Costa, D.; et al. Editors’ Choice—The Effect of Anchor Group and Alkyl Backbone Chain on Performance of Organic Compounds as Corrosion Inhibitors for Aluminum Investigated Using an Integrative Experimental-Modeling Approach. J. Electrochem. Soc. 2020, 167, 061509. [Google Scholar] [CrossRef]
- El-Haddad, M.N.; Fouda, A.S. Electroanalytical, quantum and surface characterization studies on imidazole derivatives as corrosion inhibitors for aluminum in acidic media. J. Mol. Liq. 2015, 209, 480–486. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhang, S.; Guo, L.; Zheng, X.; Xiang, B.; Chen, S. Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid. Corros. Sci. 2017, 119, 68–78. [Google Scholar] [CrossRef]
- Arellanes-Lozada, P.; Olivares-Xometl, O.; Guzmán-Lucero, D.; Likhanova, N.V.; Domínguez-Aguilar, M.A.; Lijanova, I.V.; Arce-Estrada, E. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate). Materials 2014, 7, 5711. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Liu, D.; Ding, H.; Lu, H.; Gui, J. Towards understanding corrosion inhibition of sulfonate/carboxylate functionalized ionic liquids: An experimental and theoretical study. J. Colloid Interface Sci. 2020, 579, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wu, M.; Kaya, S.; Chen, M.; Madkour, L.H. Influence of the Alkyl Chain Length of Alkyltriazoles on the Corrosion Inhibition of Iron: A DFTB Study. AIP Conf. Proc. 2018, 1995, 020015. [Google Scholar]
- Kozaderov, O.; Shikhaliev, K.; Prabhakar, C.; Tripathi, A.; Shevtsov, D.; Kruzhilin, A.; Komarova, E.; Potapov, A.; Zartsyn, I.; Kuznetsov, Y. Corrosion of α-Brass in Solutions Containing Chloride Ions and 3-Mercaptoalkyl-5-amino-1H-1,2,4-triazoles. Appl. Sci. 2019, 9, 2821. [Google Scholar] [CrossRef] [Green Version]
- Han, T.; Guo, J.; Zhao, Q.; Wu, Y.; Zhang, Y. Enhanced corrosion inhibition of carbon steel by pyridyl gemini surfactants with different alkyl chains. Mater. Chem. Phys. 2020, 240, 122156. [Google Scholar] [CrossRef]
- Feng, L.; Yin, C.; Zhang, H.; Li, Y.; Song, X.; Chen, Q.; Liu, H. Cationic Gemini Surfactants with a Bipyridyl Spacer as Corrosion Inhibitors for Carbon Steel. ACS Omega 2018, 3, 18990–18999. [Google Scholar] [CrossRef]
- Shaban, M.; Eid, A.; Farag, R.; Negm, N.; Fadda, A.; Migahed, M. Novel trimeric cationic pyrdinium surfactants as bi-functional corrosion inhibitors and antiscalants for API 5L X70 carbon steel against oilfield formation water. J. Mol. Liq. 2020, 305, 112817. [Google Scholar] [CrossRef]
- Yoo, S.-H.; Kim, Y.-W.; Shin, J.; Kim, N.-K.; Kim, J.-S. Effects of the Chain Length of Tris(carboxyalkylamino)triazine on Corrosion Inhibition Properties. Bull. Korean Chem. Soc 2015, 36, 346–355. [Google Scholar] [CrossRef]
- Hu, Z.; Meng, Y.; Ma, X.; Zhu, H.; Li, J.; Li, C.; Cao, D. Experimental and theoretical studies of benzothiazole derivatives as corrosion inhibitors for carbon steel in 1M HCl. Corros. Sci. 2016, 112, 563–575. [Google Scholar] [CrossRef]
- Sunil, D.; Kumari, P.; Shetty, P.; Rao, S. Indole Hydrazide Derivatives as Potential Corrosion Inhibitors for Mild Steel in HCl Acid Medium: Experimental Study and Theoretical Calculations. Trans. Indian Inst. Met. 2022, 75, 11–25. [Google Scholar] [CrossRef]
- Wu, Q.; Duan, W.; Jia, X.; Yang, H.; Wong, M.W. Enhanced anti-corrosive properties of thiabendazoles: A computational study. Prog. Org. Coat. 2021, 161, 106551. [Google Scholar] [CrossRef]
- Palomar-Pardavé, M.; Romero-Romo, M.; Herrera-Hernández, H.; Abreu-Quijano, M.A.; Likhanova, N.V.; Uruchurtu, J.; Juárez-García, J.M. Influence of the alkyl chain length of 2 amino 5 alkyl 1,3,4 thiadiazole compounds on the corrosion inhibition of steel immersed in sulfuric acid solutions. Corros. Sci. 2012, 54, 231–243. [Google Scholar] [CrossRef]
- Patil, D.B.; Sharma, A.R. Inhibition of Corrosion of Aluminium in Potassium Hydroxide Solution by Pyridine Derivatives. ISRN Mater. Sci. 2014, 2014, 154285. [Google Scholar] [CrossRef]
- Ansari, K.R.; Quraishi, M.A.; Singh, A. Corrosion inhibition of mild steel in hydrochloric acid by some pyridine derivatives: An experimental and quantum chemical study. J. Ind. Eng. Chem. 2015, 25, 89–98. [Google Scholar] [CrossRef]
- Dohare, P.; Quraishi, M.A.; Obot, I.B. A combined electrochemical and theoretical study of pyridine-based Schiff bases as novel corrosion inhibitors for mild steel in hydrochloric acid medium. J. Chem. Sci. 2018, 130, 8. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.; Li, X.; Cao, N.; Wang, F.; Liu, Y.; Li, Y. Schiff-base derivatives as corrosion inhibitors for carbon steel materials in acid media: Quantum chemical calculations. Corros. Eng. Sci. Technol. 2017, 53, 36–43. [Google Scholar] [CrossRef]
- Ashassi-Sorkhabi, H.; Shaabani, B.; Seifzadeh, D. Corrosion inhibition of mild steel by some schiff base compounds in hydrochloric acid. Appl. Surf. Sci. 2005, 239, 154–164. [Google Scholar] [CrossRef]
- Saha, S.K.; Hens, A.; Murmu, N.C.; Banerjee, P. A comparative density functional theory and molecular dynamics simulation studies of the corrosion inhibitory action of two novel N-heterocyclic organic compounds along with a few others over steel surface. J. Mol. Liq. 2016, 215, 486–495. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Yu, W.; Yan, Y.; You, L.; Liu, L. Molecular modeling of the inhibition mechanism of 1-(2-aminoethyl)-2-alkyl-imidazoline. Corros. Sci. 2010, 52, 2059–2065. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, B.; Yang, W.; Yin, X.; Liu, Y.; Chen, Y. Halogen-substituted imidazoline derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros. Sci. 2015, 90, 284–295. [Google Scholar] [CrossRef]
- Gutiérrez, E.; Rodríguez, J.A.; Cruz-Borbolla, J.; Alvarado-Rodríguez, J.G.; Thangarasu, P. Development of a predictive model for corrosion inhibition of carbon steel by imidazole and benzimidazole derivatives. Corros. Sci. 2016, 108, 23–35. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, G.; Hu, S.; Yan, Y.; Ren, Z.; Yu, L. Theoretical evaluation of corrosion inhibition performance of imidazoline compounds with different hydrophilic groups. Corros. Sci. 2011, 53, 147–152. [Google Scholar] [CrossRef]
- Cai, J. Corrosion Inhibition Effect of Three Imidazolium Ionic Liquids On Carbon Steel In Chloride Contaminated Environment. Int. J. Electrochem. Sci. 2020, 15, 1287–1301. [Google Scholar] [CrossRef]
- Singh, A.; Ansari, K.R.; Kumar, A.; Liu, W.; Songsong, C.; Lin, Y. Electrochemical, surface and quantum chemical studies of novel imidazole derivatives as corrosion inhibitors for J55 steel in sweet corrosive environment. J. Alloys Compd. 2017, 712, 121–133. [Google Scholar] [CrossRef]
- Ouakki, M.; Galai, M.; Rbaa, M.; Abousalem, A.; Lakhrissi, B.; Rifi, E.H.; Cherkaoui, M. Quantum chemical and experimental evaluation of the inhibitory action of two imidazole derivatives on mild steel corrosion in sulphuric acid medium. Heliyon 2019, 5, e02759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tebbji, K.; Oudda, H.; Hammouti, B.; Benkaddour, M.; El Kodadi, M.; Ramdani, A. Inhibition effect of two organic compounds pyridine–pyrazole type in acidic corrosion of steel. Colloids Surf. A Physicochem. Eng. Asp. 2005, 259, 143–149. [Google Scholar] [CrossRef]
- Aljourani, J.; Raeissi, K.; Golozar, M.A. Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl solution. Corros. Sci. 2009, 51, 1836–1843. [Google Scholar] [CrossRef]
- Ech-chihbi, E.; Nahlé, A.; Salim, R.; Oudda, H.; El Hajjaji, F.; El Kalai, F.; El Aatiaoui, A.; Taleb, M. An Investigation into Quantum Chemistry and Experimental Evaluation of Imidazopyridine Derivatives as Corrosion Inhibitors for C-Steel in Acidic Media. J. Bio-Tribo-Corros. 2019, 5, 24. [Google Scholar] [CrossRef]
- Benhmamou, D.; Salghi, R.; Zarrouk, A.; Zarrok, H.; Hammouti, B.; Al-Salem, S.; El Assyry, A.; Benchat, N.; Bouachrine, M. Electrochemical and gravimetric evaluation of 7-methyl-2-phenylimidazo[1,2-α]pyridine of carbon steel corrosion in phosphoric acid solution. Int. J. Electrochem. Sci. 2013, 8, 11526–11545. [Google Scholar]
- Wang, D.; Yang, D.; Zhang, D.; Li, K.; Gao, L.; Lin, T. Electrochemical and DFT studies of quinoline derivatives on corrosion inhibition of AA5052 aluminium alloy in NaCl solution. Appl. Surf. Sci. 2015, 357, 2176–2183. [Google Scholar] [CrossRef]
- Ebenso, E.; Obot, I.; Murulana, L. Quinoline and its Derivatives as Effective Corrosion Inhibitors for Mild Steel in Acidic Medium. Int. J. Electrochem. Sci. 2010, 5, 1586. [Google Scholar]
- Verma, C.; Quraishi, M.A.; Olasunkanmi, L.O.; Ebenso, E.E. l-Proline-promoted synthesis of 2-amino-4-arylquinoline-3-carbonitriles as sustainable corrosion inhibitors for mild steel in 1 M HCl: Experimental and computational studies. RSC Adv. 2015, 5, 85417–85430. [Google Scholar] [CrossRef]
- Erdoğan, Ş.; Safi, Z.S.; Kaya, S.; Işın, D.Ö.; Guo, L.; Kaya, C. A computational study on corrosion inhibition performances of novel quinoline derivatives against the corrosion of iron. J. Mol. Struct. 2017, 1134, 751–761. [Google Scholar] [CrossRef]
- Eldesoky, A.M.; Nozha, S.G. The adsorption and corrosion inhibition of 8-hydroxy-7-quinolinecarboxaldehyde derivatives on C-steel surface in hydrochloric acid. Chin. J. Chem. Eng. 2017, 25, 1256–1265. [Google Scholar] [CrossRef]
- Ouakki, M.; Galai, M.; Cherkaoui, M. Imidazole derivatives as efficient and potential class of corrosion inhibitors for metals and alloys in aqueous electrolytes: A review. J. Mol. Liq. 2022, 345, 117815. [Google Scholar] [CrossRef]
- Eldakar, N.; Nobe, K. Effect of Substituted Benzotriazoles on the Anodic Dissolution of Iron in H2SO4. Corrosion 1981, 37, 271–278. [Google Scholar] [CrossRef]
- Behpour, M.; Ghoreishi, S.M.; Salavati-Niasari, M.; Ebrahimi, B. Evaluating two new synthesized S–N Schiff bases on the corrosion of copper in 15% hydrochloric acid. Mater. Chem. Phys. 2008, 107, 153–157. [Google Scholar] [CrossRef]
- Liu, P.; Fang, X.; Tang, Y.; Sun, C.; Yao, C. Electrochemical and Quantum Chemical Studies of 5-Substituted Tetrazoles as Corrosion Inhibitors for Copper in Aerated 0.5 M H2SO4 Solution. Mater. Sci. Appl. 2011, 2, 1268. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Shukla, S.K.; Quraishi, M.A.; Ebenso, E.E. Investigation of adsorption characteristics of N,N′-[(methylimino)dimethylidyne]di-2,4-xylidine as corrosion inhibitor at mild steel/sulphuric acid interface. J. Taiwan Inst. Chem. Eng. 2012, 43, 463–472. [Google Scholar] [CrossRef]
- Yurt, A.; Balaban, A.; Kandemir, S.U.; Bereket, G.; Erk, B. Investigation on some Schiff bases as HCl corrosion inhibitors for carbon steel. Mater. Chem. Phys. 2004, 85, 420–426. [Google Scholar] [CrossRef]
- Ghanbari, A.; Attar, M.M.; Mahdavian, M. Corrosion inhibition performance of three imidazole derivatives on mild steel in 1M phosphoric acid. Mater. Chem. Phys. 2010, 124, 1205–1209. [Google Scholar] [CrossRef]
- Abdulazeez, I.; Zeino, A.; Kee, C.W.; Al-Saadi, A.A.; Khaled, M.; Wong, M.W.; Al-Sunaidi, A.A. Mechanistic studies of the influence of halogen substituents on the corrosion inhibitive efficiency of selected imidazole molecules: A synergistic computational and experimental approach. Appl. Surf. Sci. 2019, 471, 494–505. [Google Scholar] [CrossRef]
- Li, W.; He, Q.; Pei, C.; Hou, B. Experimental and theoretical investigation of the adsorption behaviour of new triazole derivatives as inhibitors for mild steel corrosion in acid media. Electrochim. Acta 2007, 52, 6386–6394. [Google Scholar] [CrossRef]
- Vidhya, P. Theoretical Study of Some Cyclic Halogenated Compounds as Corrosion Inhibitors. 2016. Available online: https://edlib.net/2016/icssccet/ICSSCCET2016065.pdf (accessed on 10 March 2016).
- Qiang, Y.; Zhang, S.; Yan, S.; Zou, X.; Chen, S. Three indazole derivatives as corrosion inhibitors of copper in a neutral chloride solution. Corros. Sci. 2017, 126, 295–304. [Google Scholar] [CrossRef]
- Machado Fernandes, C.; Faro, L.V.; Pina, V.G.S.S.; de Souza, M.C.B.V.; Boechat, F.C.S.; de Souza, M.C.; Briganti, M.; Totti, F.; Ponzio, E.A. Study of three new halogenated oxoquinolinecarbohydrazide N-phosphonate derivatives as corrosion inhibitor for mild steel in acid environment. Surf. Interfaces 2020, 21, 100773. [Google Scholar] [CrossRef]
- Chaitra, T.K.; Mohana, K.N.S.; Tandon, H.C. Thermodynamic, electrochemical and quantum chemical evaluation of some triazole Schiff bases as mild steel corrosion inhibitors in acid media. J. Mol. Liq. 2015, 211, 1026–1038. [Google Scholar] [CrossRef]
- Ali, A.; Salghi, R.; Zarrouk, A.; Omar, B.; Zarrok, H.; Hammouti, B.; Al-Deyab, S.; Benchat, N.; Abdelmalik, E. Adsorption and Corrosion Inhibition of Steel in Hydrochloric Acid Solution by 3-bromo-2-phenylimidazol[1,2-α] pyridine. Int. J. Electrochem. Sci. 2013, 8, 11512–11525. [Google Scholar]
- Yadav, D.K.; Maiti, B.; Quraishi, M.A. Electrochemical and quantum chemical studies of 3,4-dihydropyrimidin-2(1H)-ones as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros. Sci. 2010, 52, 3586–3598. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Rawat, J. Inhibition of mild steel corrosion by some macrocyclic compounds in hot and concentrated hydrochloric acid. Mater. Chem. Phys. 2002, 73, 118–122. [Google Scholar] [CrossRef]
- El Achouri, M.; Infante, M.R.; Izquierdo, F.; Kertit, S.; Gouttaya, H.M.; Nciri, B. Synthesis of some cationic gemini surfactants and their inhibitive effect on iron corrosion in hydrochloric acid medium. Corros. Sci. 2001, 43, 19–35. [Google Scholar] [CrossRef]
- Abd El-Maksoud, S.A.; Fouda, A.S. Some pyridine derivatives as corrosion inhibitors for carbon steel in acidic medium. Mater. Chem. Phys. 2005, 93, 84–90. [Google Scholar] [CrossRef]
- Kokalj, A. Corrosion inhibitors: Physisorbed or chemisorbed? Corros. Sci. 2022, 196, 109939. [Google Scholar] [CrossRef]
- Razzaghi-Asl, N.; Sepehri, S.; Ebadi, A.; Karami, P.; Nejatkhah, N.; Johari-Ahar, M. Insights into the current status of privileged N-heterocycles as antileishmanial agents. Mol. Divers. 2020, 24, 525–569. [Google Scholar] [CrossRef] [PubMed]
- Vervliet-Scheebaum, M.; Straus, A.; Tremp, H.; Hamer, M.; Maund, S.J.; Wagner, E.; Schulz, R. A microcosm system to evaluate the toxicity of the triazine herbicide simazine on aquatic macrophytes. Environ. Pollut. 2010, 158, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Papaefthimiou, C.; de Guadalupe Cabral, M.; Mixailidou, C.; Viegas, C.A.; Sá-Correia, I.; Theophilidis, G. Comparison of two screening bioassays, based on the frog sciatic nerve and yeast cells, for the assessment of herbicide toxicity. Environ. Toxicol. Chem. 2004, 23, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Larif, M.; Adad, A.; Hmammouchi, R.; Taghki, A.I.; Soulaymani, A.; Elmidaoui, A.; Bouachrine, M.; Lakhlifi, T. Biological activities of triazine derivatives. Combining DFT and QSAR results. Arab. J. Chem. 2017, 10, S946–S955. [Google Scholar] [CrossRef] [Green Version]
- Saka, M.; Tada, N.; Kamata, Y. Chronic toxicity of 1,3,5-triazine herbicides in the postembryonic development of the western clawed frog Silurana tropicalis. Ecotoxicol. Environ. Saf. 2018, 147, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zhang, Z.-M.; Zhang, R.-R.; Li, Y.-Q.; Sun, A.-L.; Shi, X.-Z.; Chen, J.; Song, S. Aquaculture-derived distribution, partitioning, migration, and transformation of atrazine and its metabolites in seawater, sediment, and organisms from a typical semi-closed mariculture bay. Environ. Pollut. 2021, 271, 116362. [Google Scholar] [CrossRef]
- Liu, S.; Wu, C.-H.; Huang, H.-J. Toxicity and anaerobic biodegradability of pyridine and its derivatives under sulfidogenic conditions. Chemosphere 1998, 36, 2345–2357. [Google Scholar] [CrossRef] [PubMed]
- Vryzas, Z.; Vassiliou, G.; Alexoudis, C.; Papadopoulou-Mourkidou, E. Spatial and temporal distribution of pesticide residues in surface waters in northeastern Greece. Water Res. 2009, 43, 1–10. [Google Scholar] [CrossRef]
- Peddinghaus, S.; Brinkmann, M.; Bluhm, K.; Sagner, A.; Hinger, G.; Braunbeck, T.; Eisenträger, A.; Tiehm, A.; Hollert, H.; Keiter, S.H. Quantitative assessment of the embryotoxic potential of NSO-heterocyclic compounds using zebrafish (Danio rerio). Reprod. Toxicol. 2012, 33, 224–232. [Google Scholar] [CrossRef]
S No. | Chemical Structure/ Abbreviation | Substituent | Adsorption Behavior | Ref.(s) |
---|---|---|---|---|
1 | A:R=(CH2)6CH3 B:R=(CH2)8CH3 C:R=(CH2)10CH3 D:R=(CH2)12CH3 E:R=(CH2)14CH3F F:R=(CH2)16CH3 G:R=(CH2)18CH3 H:R=(CH2)20CH3 | - | [18] | |
2 | IC-7:R=(CH2)6CH3 IC-9:R=(CH2)8CH3 IC-11:R=(CH2)10CH3 IC-13:R=(CH2)12CH3 IC-15:R=(CH2)14CH3F IC-17:R=(CH2)6CH3 | - | [19] | |
3 | [VMIM]I: R=CH3 [VPIM]I: R=(CH2)2CH3 [VBIM]I: R=(CH2)3CH3 | Mixed-type inhibitors/ Langmuir | [24] | |
4 | [AEIM]Br: R=CH2CH3 [ABIM]Br: R=(CH2)3CH3 [AHIM]Br: R=(CH2)5CH3 [AOIM]Br: R=(CH2)7CH3 | Cathodic inhibitors/ Langmuir | [29] | |
5 | PImC4:R=(CH2)3CH3 PimC8:R=(CH2)7CH3 PimC12:R=(CH2)11CH3 | Langmuir | [30] | |
6 | A:R=CH2COOH B:R=(CH2)2COOH C:R=(CH2)3SO3H | Langmuir | [31] | |
7 | A:R=(CH2)3CH3 B:R=(CH2)6CH3 C:R=(CH2)9CH3 | - | [32] | |
8 | A: R=(CH2)2CH3 B: R=(CH2)3CH3 | - | [33] | |
9 | HBP:n = 6 OBP:n = 8 DBP:n = 10 | Mixed-type inhibitors/ Langmuir | [34] | |
10 | 8-Bpy: R=(CH2)7CH3 10-Bpy: R=(CH2)9CH3 12-Bpy: R=(CH2)11CH3 | Mixed-type inhibitors/ Langmuir | [35] | |
11 | APMC6:R=(CH2)5CH3 APMC12:R=(CH2)11CH3 APMC18:R=(CH2)17CH3 | Mixed-type inhibitors/ Langmuir | [36] | |
12 | Tris-C1:R=(CH2)1 Tris-C2:R=(CH2)2 Tris-C3:R=(CH2)3 Tris-C4:R=(CH2)4 Tris-C5:R=(CH2)5 | Mixed-type inhibitors/ Langmuir | [37] | |
13 | BTC6T: R=(CH2)5CH3 BTC8T: R=(CH2)7CH3 | Mixed-type inhibitors/ Langmuir | [38] | |
14 | IAH: R=(CH2)1 IBH: R=(CH2)3 | Mixed-type inhibitors/ Langmuir | [39] | |
15 | C1:R=(CH2)1CH3 C2:R=(CH2)3CH3 C3:R=(CH2)5CH3 C4:R=(CH2)7CH3 C5:R=(CH2)9CH3 C6:R=(CH2)11CH3 | - | [40] | |
16 | IC-2:R=(CH2)1CH3 IC-3:R=(CH2)2CH3 IC-5:R=(CH2)4CH3 IC-7:R=(CH2)6CH3 IC-11:R=(CH2)10CH3 IC-13:R=(CH2)12CH3 | Langmuir | [41] |
S No. | Chemical Structure/ Abbreviation | Substituent | Adsorption Behavior | Ref.(s) |
---|---|---|---|---|
1 | 1-IM: R=CF3 2-IM: R=CCl3 | Mixed-type inhibitors/ Langmuir | [49] | |
2 | A: R=Cl B: R=CH3 | Mixed-type inhibitors/ Langmuir | [50] | |
3 | A:R=CH2COOH B:R=CH2CH2OH C:R=CH2CH2NH2 D:R=H | - | [51] | |
4 | Comp. a: R=COO− Comp.c:R=Ph | Langmuir | [52] | |
5 | M1:R=OCH3 M2:R=CH3 M3:R=NO2 | Mixed-type inhibitors/ Langmuir | [53] | |
6 | P1:R=H P2:R=OH | Mixed-type inhibitors/ Langmuir | [26] | |
7 | IM-Cl: R=Cl IM-CH3:R=CH3 | Mixed-type inhibitors/ Langmuir | [54] | |
8 | P1:R=CH2OH P2:R=COOC2H5 | Frumkin | [55] | |
9 | 3-MP: R=CH3 3-NM: R=NO2 | - | [42] | |
10 | PC-1:R=H PC-2:R=CH3 PC-3:R=OCH3 | Mixed-type inhibitors/ Langmuir | [43] | |
11 | DAP-1:R=Me DAP-2:R=H | Anodic-type/ Langmuir | [44] | |
12 | A: R=H B: R=CH3 C: R=Cl | Donor-acceptor interaction | [45,46] | |
13 | ADTP1:R=OCH3 ADTP2:R=H ADTP3:R=NO2 | Mixed-type inhibitors/ Langmuir | [43] | |
14 | AP: R=H ABPT: R=SH | - | [47] | |
15 | BI: R=H 2-CH3-BI: R=CH3 2-SH-BI: R=SH | Mixed-type inhibitors/ Langmuir | [56] | |
16 | C1:R=CHO C2:R=CH2OH | Mixed-type inhibitors/ Langmuir | [57] | |
17 | P1:R=H P2:R=OCH3 | Mixed-type inhibitors/ Langmuir | [58] | |
18 | 8-AQ: R=NH2 8-NQ:R=NO2 | Anodic inhibitors | [59] | |
19 | QL: R=H QLD: R=CH3 QLDA: R=COOH | Langmuir | [60] | |
20 | AAC-1:R=NO2 AAC-2:R=H AAC-3:R=OH | Mixed-type inhibitors/ Langmuir | [61] | |
21 | Q1:R=H Q2:R=CH3 Q3:R=OCH3 Q4:R=N(CH3)2 | - | [62] | |
22 | HL1:R=CH3 HL2:R=H HL3:R=NO2 | Mixed-type inhibitors/ Langmuir | [63] |
Substituent | σm | σp |
---|---|---|
-CH3 | −0.07 | −0.17 |
-CH2CH3 | −0.07 | −0.15 |
-CH(CH3)2 | −0.07 | −0.15 |
-C(CH3)3 | −0.10 | −0.20 |
-CN | +0.56 | +0.66 |
-COOH | +0.36 | +0.43 |
-CHO | +0.36 | +0.22 |
-CONH2 | +0.28 | +0.36 |
-CF3 | +0.43 | +0.54 |
-NH2 | −0.16 | −0.66 |
-NMe2 | −0.15 | −0.83 |
-NO2 | +0.71 | +0.78 |
-OH | +0.12 | −0.37 |
-OCH3 | +0.12 | −0.22 |
-SH | +0.25 | +0.15 |
-F | +0.34 | +0.06 |
-Cl | +0.37 | +0.23 |
-Br | +0.39 | +0.23 |
-I | +0.35 | +0.28 |
-H | 0.00 | 0.00 |
S No. | Chemical Structure/ Abbreviation | Substituent | Adsorption Behavior | Ref.(s) |
---|---|---|---|---|
1 | 2-Cl-Imz: R=Cl 2-Br-Imz: R=Br 2-I-Imz: R=I | anodic-type inhibitor/ Langmuir | [71] | |
2 | IM-Cl: R=Cl IM-CH3:R=CH3 | Mixed-type inhibitors/ Langmuir | [54] | |
3 | CATM: R=Cl MATM: R=OCH3 FATM: R=F | Mixed-type inhibitors/ Langmuir | [72] | |
4 | A: R=H B: R=Br C: R=Cl | - | [73] | |
5 | A: R=H B: R=CH3 C: R=Cl | Mixed-type inhibitors/ Langmuir | [46] | |
6 | 4-FIA: R=F 4-CIA: R=Cl 4-BIA: R=Br | Mixed-type inhibitors/ Langmuir | [74] | |
7 | DHOP-F: R=F DHOP-Cl: R=Cl DHOP-Br: R=Br | Mixed-type inhibitors/ Langmuir | [75] |
Corrosion Inhibitor | Metal | Corrosive Medium | Temperature | Adsorption Constant | Gibbs Free Energy of Adsorption (Kj/mol) | Ref. |
---|---|---|---|---|---|---|
[VMIM]I | X70 steel | 0.5 M H2SO4 | 298 | 4865.2330 L/mol | −30.9851 | [30] |
[VPIM]I | 5542.6228 L/mol | −31.3081 | ||||
[VBIM]I | 7065.6398 L/mol | −31.9096 | ||||
[AEIM]Br | Copper | 0.5 M H2SO4 | 298 | 0.53 × 105 L/mol | −36.9 | [31] |
[ABIM]Br | 2.17 × 105 L/mol | −40.39 | ||||
[AHIM]Br | 2.32 × 105 L/mol | −40.56 | ||||
[AOIM]Br | 2.50 × 105 L/mol | −40.75 | ||||
PImC4 | Aluminum alloy AA6061 | 1.0 M H2SO4 | 298 | 96 mmol−1 | −21.3 | [32] |
PimC8 | 179 mmol−1 | −22.8 | ||||
PimC12 | 350 mmol−1 | −25.0 | ||||
A | Carbon steel | 0.5 M HCl | 298 K | 4 L/mol | −12.3 | [33] |
B | 333.3 L/mol | −24.3 | ||||
HBP | Carbon steel | 1.0 M HCl | 298 K | 0.0342 L/mg | −32.86 | [36] |
OBP | 0.0546 L/mg | −34.31 | ||||
DBP | 0.1079 L/mg | −36.28 | ||||
8-Bpy | Carbon steel | 1.0 M HCl | 303 K | 6.808 × 106 L/mol | −48.93 | [37] |
10-Bpy | 8.954 × 106 L/mol | −49.61 | ||||
12-Bpy | 3.630 × 106 L/mol | −47.37 | ||||
APMC6 | L X70 carbon steel | oilfield formation water | 298 K | 2.71 × 104 L/mol | − | [38] |
APMC12 | 3.91 × 104 L/mol | − | ||||
APMC18 | 5.35 × 104 L/mol | − | ||||
Tris-C1 | Mild steel | 1.0 M HCl | 294 K | 281 M−1 | −23.6 | [39] |
Tris-C2 | 507 M−1 | −25.0 | ||||
Tris-C3 | 1400 M−1 | −27.5 | ||||
Tris-C4 | 1650 M−1 | −27.9 | ||||
Tris-C5 | 4590 M−1 | −36.1 | ||||
BTC6T | Carbon steel | 1.0 M HCl | 293 K | 17.34 mM−1 | −33.56 | [40] |
BTC8T | 17.34 mM−1 | −36.52 | ||||
IAH | Mild steel | 0.5 M HCl | 303 K | 1.91 × 104 M−1 | −34.90 | [41] |
IBH | 2.95 × 104 M−1 | −36.05 | ||||
IC-3 | Mild steel | 0.5 M HCl | 303 K | - | −30.93 | [27] |
IC-5 | - | −27.92 | ||||
IC-7 | - | −26.44 | ||||
IC-11 | - | −27.02 | ||||
IC-13 | - | −27.92 | ||||
1-IM | Mild steel | 0.5 M HCl | 303 K | 1.69 × 104 L/mol | −34.65 | [51] |
2-IM | 1.36 × 105 L/mol | −39.67 | ||||
Comp. a | Carbon steel | 0.3 M NaCl sat. Ca(OH)2 | 298 K | 4.28 × 103 L/mol | −30.7 | [26] |
ADTP1 | Mild steel | 1.0 M HCl | 308 | 40.2 × 103 M−1 | −37.4 | [45] |
ADTP2 | 21.4 × 103 M−1 | −35.8 | ||||
ADTP3 | 10.2 × 103 M−1 | −33.9 | ||||
DAP-1 | Mild steel | 1.0 M HCl | 308 K | 5.8 × 104 L/mol | −40.16 | [46] |
DAP-2 | 3.4 × 104 L/mol | −39.19 | ||||
BI | Mild steel | 1.0 M HCl | 298 K | 2 × 103 M−1 | −28.78 | [58] |
2-CH3-BI | 2.5 × 103 L/mol | −29.34 | ||||
2-SH-BI | 10 × 103 L/mol | −32.77 | ||||
AAC-1 | Mild steel | 1.0 M HCl | 308 K | 2.17× 104 M−1 | −35.87 | [63] |
AAC-2 | 2.63 × 104 L/mol | −36.36 | ||||
AAC-3 | 3.32 × 104 L/mol | −36.96 | ||||
HL1 | C-steel | 2 mol·L−1 HCl | 303 K | 4.39 × 105 L/mol | −42.85 | [21] |
HL2 | 2.53 × 105 L/mol | −41.46 | ||||
HL3 | 1.71 × 105 L/mol | −40.48 | ||||
2-Cl-Imz | Mild steel | 1.0 M HCl | - | 1.2 × 103 L/mol | −27.6 | [73] |
2-I-Imz | 0.9 × 103 L/mol | −26.7 | ||||
CATM | Mild steel | 1.0 M HCl | 298 K | 1.74 × 104 M−1 | −34.15 | [74] |
FATM | 1.75 × 104 L/mol | −34.17 | ||||
4-FIA | Copper | 3% NaCl | 298 K | 4.57 × 105 L/mol | −42.24 | [71] |
4-CIA | 7.19 × 105 L/mol | −43.36 | ||||
4-BIA | 4.93 × 105 L/mol | −42.43 | ||||
DHOP-F | Mild steel | 1.0 M HCl | 298 K | 1.89 × 104 L/mol | −34.4 | [76] |
DHOP-Cl | 2.20 × 104 L/mol | −34.7 | ||||
DHOP-Br | 2.52 × 104 L/mol | −35.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Li, J.; Zeng, X. Revealing the Correlation between Molecular Structure and Corrosion Inhibition Characteristics of N-Heterocycles in Terms of Substituent Groups. Materials 2023, 16, 2148. https://doi.org/10.3390/ma16062148
Tan L, Li J, Zeng X. Revealing the Correlation between Molecular Structure and Corrosion Inhibition Characteristics of N-Heterocycles in Terms of Substituent Groups. Materials. 2023; 16(6):2148. https://doi.org/10.3390/ma16062148
Chicago/Turabian StyleTan, Li, Jiusheng Li, and Xiangqiong Zeng. 2023. "Revealing the Correlation between Molecular Structure and Corrosion Inhibition Characteristics of N-Heterocycles in Terms of Substituent Groups" Materials 16, no. 6: 2148. https://doi.org/10.3390/ma16062148
APA StyleTan, L., Li, J., & Zeng, X. (2023). Revealing the Correlation between Molecular Structure and Corrosion Inhibition Characteristics of N-Heterocycles in Terms of Substituent Groups. Materials, 16(6), 2148. https://doi.org/10.3390/ma16062148