Valorization of Vegetal Fibers (Hemp, Flax, Miscanthus and Bamboo) in a Fiber Reinforced Screed (FRS) Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Characterization in the Fresh State
Volumic Mass and Air Entrapped
Slump Test/Consistency
2.2.2. Characterization in the Hardened State
Flexural and Compressive Strength
Shrinkage Test
Scanning Electron Microscopy (SEM)
3. Results and Discussions
3.1. Characterization in the Fresh State
3.1.1. Bulk Density (Volumic Mass)
3.1.2. Control of Air Content
3.1.3. Slump Test/Consistency
3.2. Characterization in the Hardened State
3.2.1. Flexural Strength
3.2.2. Compressive Strength
3.2.3. Shrinkage Test
3.2.4. Scanning Electron Microscope (SEM)
4. Conclusions
- An increase in fiber dosage and aspect ratio (AR) negatively impacts workability. Soft fibers start to have a non-fluid flow behavior from 1.2 kg/m3 of fiber dosage, whereas rigid fibers remain smooth at all dosages (at T0). The highest spread value was noted for Miscanthus 5 at a fiber dosage of 4 kg/m3, more than 100 mm higher than Flax 15, which had the lowest spread. FRS loses workability from a fiber dosage of 1.2 kg/m3, particularly with soft fibers, tending toward fiber balling. All the results obtained in the case of natural fibers showed a better spreading behavior than synthetic fibers, with the exception of the soft fibers for a dosage of 4 kg/m3. All values found for both soft- and rigid-fiber formulations had no segregation.
- The use of natural fibers in mortar leads to a decrease in the bulk density, much more significant in the soft fibers than in the rigid fibers for higher fiber dosages. The highest density decrease (about 12%) was observed in the case of Hemp 15 compared to the control sample (containing no fibers) and this for dosages of 4 kg/m3 in the soft fibers. This result was compared to that obtained in the case of rigid fibers such as Miscanthus 15, where the most significant decrease in density was 3% for the same dosage. Furthermore, this decrease in density observed in both cases was induced by a greater increase in the occluded air quantity for both soft and rigid fibers: 80% in the case of H15 and 53% in the case of M15. Except in the case of high dosages of soft fibers, the presence of pores may be the primary cause of the lower density of the FRS compared to the control sample. An increase in occluded air is noted with a higher fiber dosage, the occluded air being bigger in the case of soft fibers. It has been determined that the properties of bulk density and air content are complementary, meaning that the addition of natural fibers to the mortar causes a decrease in bulk density and an increase in air content. The greatest decreases in density and increases in air occluded occur in the case of soft fibers at high dosages.
- Flexural strength (FS) is positively influenced by the fiber dosage, bamboo and hemp being the best-performing fibers. All values were higher than that of synthetic fibers FRSs. In terms of the dosage of fibers, two points were noted: an increase in FS at 90 days of curing of 67% compared to the antifissuration screed (AS) mortar for a dosage of 2 kg/m3 in the case of Bamboo 5; and a 71% increase compared to the AS mortar for a dosage of 1.2 kg/m3 in the case of Hemp 5. The mechanical performance of these two formulations exceeded that of the control sample.
- The best results in terms of compressive strength (CS) were found with lower fiber dosages and 1.2 kg/m3 for both soft and rigid fibers. All CS values were higher than that of the synthetic-fiber formulation, bamboo being slightly superior. Rigid-fiber formulations have higher CS than soft-fiber ones due to their lower AR. Although the dosage of 0.4 kg/m3 performed adequately, the optimum dosage is 1.2 kg/m3 for all fibers and at all ages of curation. H5 achieved a 60% increase in CS over the AS mortar at 90 days, while B5 resulted in a 67% increase in CS over the AS mortar at 1.2 kg/m3. Both H5 and B5 performed well in both CS and FS and exceeded the control sample value.
- All the formulations conform to the target of 800 μm/m (0.8 mm/m), and soft fibers (higher aspect ratio) have a better shrinkage control than rigid ones, with flax standing out. Similar performances by the control sample and FRS with synthetic fibers have been gathered.
- All of the fibers appear to adhere well to the matrix, according to SEM observations, which is consistent with the increase in mechanical strength. Soft fibers alter their shape as they are mixed with the cement, changing the AR ratio from their original state.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biswas, R.K.; Iwanami, M.; Chijiwa, N.; Uno, K. Effect of non-uniform rebar corrosion on structural performance of RC structures: A numerical and experimental investigation. Constr. Build. Mater. 2020, 230, 116908. [Google Scholar] [CrossRef]
- Biswas, R.K.; Iwanami, M.; Chijiwa, N.; Uno, K. Finite element analysis of rc beams subjected to non-uniform corrosion of steel bars. In Proceedings of the Fifth International Conference on Sustainable Construction Materials and Technologies, London, UK, 14–17 July 2019. [Google Scholar]
- Chao, S.-H.; Liao, W.-C.; Wongtanakitcharoen, T.; Naaman, A.E. Large scale tensile tests of high performance fiber reinforced cement composites. In Proceedings of the Fifth International RILEM Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC5), Mainz, Germany, 10–13 July 2007; pp. 77–86. [Google Scholar]
- Bonopera, M.; Chang, K.-C.; Chen, C.-C.; Sung, Y.-C.; Tullini, N. Prestress force effect on fundamental frequency and deflection shape of PCI beams. Struct. Eng. Mech. Int. J. 2018, 67, 255–265. [Google Scholar]
- Singh, B.P.; Yazdani, N.; Ramirez, G. Effect of a time dependent concrete modulus of elasticity on prestress losses in bridge girders. Int. J. Concr. Struct. Mater. 2013, 7, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Bin Ahmed, F.; Biswas, R.K.; Abid Ahsan, K.; Islam, S.; Rahman, M.R. Estimation of strength properties of geopolymer concrete. Mater. Today Proc. 2021, 44, 871–877. [Google Scholar] [CrossRef]
- Ragavendra, S.; Reddy, I.P.; Dongre, A.R. Fiber reinforced concrete—A case study. In Proceedings of the Architectural Engineering Aspect for Sustainable Building Envelopes, Hyderabad, India, 10–11 November 2017; pp. 1–15. [Google Scholar]
- Biswas, R.K.; Iwanami, M.; Chijiwa, N.; Nakayama, K. Numerical evaluation on the effect of steel bar corrosion on the cyclic behaviour of RC bridge piers. Mater. Today Proc. 2021, 44, 2393–2398. [Google Scholar] [CrossRef]
- Paul, S.C.; Pirskawetz, S.; Van Zijl, G.P.A.G.; Schmidt, W. Acoustic emission for characterising the crack propagation in strainhardening cement-based composites (SHCC). Cem. Concr. Res. 2015, 69, 19–24. [Google Scholar] [CrossRef]
- Paul, S.C.; Babafemi, A.J. A review of the mechanical and durability properties of strain hardening cement-based composite(SHCC). J. Sustain. Cem. Mater. 2018, 7, 57–78. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Kang, S.T.; Yoon, Y.S. Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC. Constr. Build. Mater. 2014, 64, 67–81. [Google Scholar] [CrossRef]
- Wille, K.; Kim, D.J.; Naaman, A.E. Strain-hardening UHP-FRC with low fiber contents. Mater. Struct. Constr. 2011, 44, 583–598. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Kang, S.T.; Yoon, Y.S. Enhancing the flexural performance of ultra-high-performance concrete using long steel fibers. Compos. Struct. 2016, 147, 220–230. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Zi, G.; Kang, S.T.; Yoon, Y.S. Biaxial flexural behavior of ultra-high-performance fiber-reinforced concrete with different fiber lengths and placement methods. Cem. Concr. Compos. 2015, 63, 51–66. [Google Scholar] [CrossRef]
- Ryu, G.S.; Kang, S.T.; Park, J.J.; Koh, K.T.; Kim, S.W. Mechanical behavior of UHPC(ultra high performance concrete) according to hybrid use of steel fibers. Adv. Mater. Res. 2011, 287–290, 453–457. [Google Scholar] [CrossRef]
- Alam, M.S.; Hussein, A. Experimental investigation on the effect of longitudinal reinforcement on shear strength of fiber reinforced polymer reinforced concrete beams. Can. J. Civ. Eng. 2011, 38, 243–251. [Google Scholar] [CrossRef]
- Baillie, C.; Jayasinghe, R. (Eds.) Green Composites: Polymer Composites and the Environment, 1st ed.; Woodhead Publishing: Sawston, UK, 2004; p. 320. [Google Scholar]
- Bledzki, A.K.; Sperber, V.E.; Faruk, O. Natural and Wood Fiber Reinforcement in Polymers; Smithers Rapra Publishing, Rapra Technology Ltd.: Shawbury, UK, 2002; Volume 13. [Google Scholar]
- Mostefai, N.; Hamzaoui, R.; Guessasma, S.; Aw, A.; Nouri, H. Microstructure and mechanical performance of modified hemp fiber and shiv mortars: Discovering the optimal formulation. Mater. Des. 2015, 84, 359–371. [Google Scholar] [CrossRef]
- Le Ravalec, V.; Bono, P.; Bausset, J. Mémento 2020: Panorama des Marchés. Fibers Végétales Techniques à Usages Matériaux (hors bois) en France. p. 48. Available online: https://france-miscanthus.org/wp-content/uploads/2020/03/Memento-March%C3%A9s-fibres-v%C3%A9g%C3%A9tales-techniques-mat%C3%A9riaux-2020-va.pdf (accessed on 4 September 2022).
- Bołtryk, M.; Pawluczuk, E. Properties of a lightweight cement composite with an ecological organic filler. Constr. Build. Mater. 2014, 51, 97–105. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Banthia, N. Plant-based natural fiber reinforced cement composites: A review. Cem. Concr. Compos. 2016, 68, 96–108. [Google Scholar] [CrossRef]
- Freudiger, M. Construction Material on a Plant Basis and Method for the Producing of this Construction Material. Switzerland Patent EP 1 554 228 B1, 5 October 2002. [Google Scholar]
- Höhn, H. Building Material with a Plant Filler. Luxembourg Patent EP 1 765 742 B1, 2004. [Google Scholar]
- Höhn, H. Building Material with Plant Filler. Luxembourg Patent EP 2 069 255 B1, 2007. [Google Scholar]
- Höhn, I.; Höhn, H. Construction Material with Filler or Vegetal Origin. Luxembourg Patent EP 2 177 489 B1, 2008. [Google Scholar]
- Jacquemot, F.; Rougeau, P. Agro-Sourced Lightweight Concrete and Use Thereof. France Patent EP 2 724 996 A2, 2013. [Google Scholar]
- Peters, J. Material or Dry Blend with Vegetal Aggregate. Luxembourg/Germany Patent EP 2 154 117 A1, 2008. [Google Scholar]
- Niyigena, C.; Amziane, S.; Chateauneuf, A. Multicriteria analysis demonstrating the impact of shiv on the properties of hemp concrete. Constr. Build. Mater. 2018, 160, 211–222. [Google Scholar] [CrossRef]
- Archila, H.; Kaminski, S.; Trujillo, D.; Escamilla, E.Z.; Harries, K.A. Bamboo reinforced concrete: A critical review. Mater. Struct. 2018, 51, 102. [Google Scholar] [CrossRef] [Green Version]
- Bołtryk, M.; Krupa, A.; Pawluczuk, E. Modification of the properties of the cement composites with the organic filler. Constr. Build. Mater. 2018, 167, 143–153. [Google Scholar] [CrossRef]
- Page, J.; Sonebi, M.; Amziane, S. Design and multi-physical properties of a new hybrid hemp-flax composite material. Constr. Build. Mater. 2017, 139, 502–512. [Google Scholar] [CrossRef] [Green Version]
- NF EN 196-1; Methods of Testing Cement—Part 1: Determination of Strength. AFNOR: Paris, France, 2016.
- NF P15-433; Methods of Testant Cement. Determination of Shrinkage and Swelling. AFNOR: Paris, France, 1994.
- NF EN 12350-6; Testing Fresh Concrete—Part 6: Density. AFNOR: Paris, France, 2019.
- NF EN-12350-7; Tests on Fresh Concrete—Part 7: Air Content—Pressure Methods. AFNOR: Paris, France, 2019.
- NF EN 12350-5; Testing Fresh Concrete—Part 5: Flow Table Test. AFNOR: Paris, France, 2019.
- NF P18-427; Concrete—Determination of Dimensional Variations between Two Opposite Faces of Hardened Concrete Specimens. AFNOR: Paris, France, 1996.
- Zanelato, E.B.; Alexandre, J.; de Azevedo, A.R.G.; Marvila, M.T. Evaluation of roughcast on the adhesion mechanisms of mortars on ceramic substrates. Mater. Struct. Constr. 2019, 52, 53. [Google Scholar] [CrossRef]
- França, B.R.; Azevedo, A.R.G.; Monteiro, S.N.; Garcia Filho, F.D.C.; Marvila, M.T.; Alexandre, J.; Zanelato, E.B. Durability of soil-Cement blocks with the incorporation of limestone residues from the processing of marble. Mater. Res. 2018, 21, 1. [Google Scholar] [CrossRef] [Green Version]
- Sakami, S.; Boukhattem, L.; Boumhaout, M.; Benhamou, B. Development of alfa fiber-based mortar with improved thermo-mechanical properties. Appl. Sci. 2020, 10, 8021. [Google Scholar] [CrossRef]
- Abani, S.; Hafsi, F.; Kriker, A.; Bali, A. Valorisation of Date Palm Fibers in Sahara Constructions. Energy Procedia 2015, 74, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Zafeiropoulos, N.E.; Baillie, C.A.; Hodgkinson, J.M. Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part II. The effect of surface treatments on the interface. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1185–1190. [Google Scholar] [CrossRef]
- Mauersberger, H.R. Matthews’ Textile Fibers. 1948. Available online: https://archive.org/stream/in.ernet.dli.2015.29785/2015.29785.Matthews-Textile-Fibers-1947_djvu.txt (accessed on 4 September 2022).
- Li, X.; Li, S.; Li, H.; Zhang, J.; Chen, J. Moisture sorption behavior and thermodynamic properties of Miscanthus samples with different particle sizes. J. Therm. Anal. Calorim. 2018, 134, 1265–1275. [Google Scholar]
- Chen, Y.; Shi, S.Q.; Chui, Y.H. Moisture sorption hysteresis and isosteric heat of sorption of moso bamboo. Wood Fiber Sci. 2009, 41, 374–381. [Google Scholar]
- de Oliveira, L.A.P.; Castro-Gomes, J.P. Physical and mechanical behaviour of recycled PET fiber reinforced mortar. Constr. Build. Mater. 2011, 25, 1712–1717. [Google Scholar] [CrossRef]
- Sidney, M.; Young, J.F.; Darwin, D. “Concrete”, Prentice Hall, 2nd ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Wong, K.J.; Yousif, B.F.; Low, K.O. The effects of alkali treatment on the interfacial adhesion of bamboo fibers. J. Mater. Des. Appl. 2010, 224, 139–148. [Google Scholar]
- Methacanon, P.; Weerawatsophon, U.; Sumransin, N.; Prahsarn, C.; Bergado, D.T. Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydr. Polym. 2010, 82, 1090–1096. [Google Scholar] [CrossRef]
- Vafaei, D.; Hassanli, R.; Ma, X.; Duan, J.; Zhuge, Y. Sorptivity and mechanical properties of fiber-reinforced concrete made with seawater and dredged sea-sand. Constr. Build. Mater. 2021, 270, 121436. [Google Scholar] [CrossRef]
- Safiuddin, M.; Abdel-Sayed, G.; Hearn, N. Performance and cost-effectiveness of short pitch-based carbon fiber reinforced mortar composite. Materials 2021, 14, 4693. [Google Scholar] [CrossRef]
- Raju, R.; Lim, S.; Akiyama, M.; Kageyama, T. Effects of concrete flow on the distribution and orientation of fibers and flexural behavior of steel fiber-reinforced self-compacting concrete beams. Constr. Build. Mater. 2020, 262, 119963. [Google Scholar] [CrossRef]
- Park, C.K. Characterization of fiber reinforced macro-defect-free cementitious materials. J. Ceram. Soc. Jpn. 1998, 106, 268–271. [Google Scholar] [CrossRef] [Green Version]
- Banthia, N.; Chokri, K.; Ohama, Y.; Mindess, S. Fiber-reinforced cement based composites under tensile impact. Adv. Cem. Based Mater. 1994, 1, 131–141. [Google Scholar] [CrossRef]
- Sawsen, C.; Fouzia, K.; Mohamed, B.; Moussa, G. Effect of flax fibers treatments on the rheological and the mechanical behavior of a cement composite. Constr. Build. Mater. 2015, 79, 229–235. [Google Scholar] [CrossRef]
- Sawsen, C.; Fouzia, K.; Mohamed, B.; Moussa, G. Optimizing the formulation of flax fiber-reinforced cement composites. Constr. Build. Mater. 2014, 54, 659–664. [Google Scholar] [CrossRef]
- Chafei, S. Influence de Différents Traitements sur les Comportements Rhéologique et Mécanique d’un Composite Cimentaire Mortier-Fibers de lin. Ph.D. Dissertation, Caen, France, 2014. Available online: http://www.theses.fr/2014CAEN2035 (accessed on 4 September 2022).
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Yap, S.P.; Lee, S.C. Green concrete partially comprised of farming waste residues: A review. J. Clean. Prod. 2016, 117, 122–138. [Google Scholar] [CrossRef]
- Hwang, C.L.; Tran, V.A.; Hong, J.W.; Hsieh, Y.C. Effects of short coconut fiber on the mechanical properties, plastic cracking behavior, and impact resistance of cementitious composites. Constr. Build. Mater. 2016, 127, 984–992. [Google Scholar] [CrossRef]
- Ramakrishnan, V. Materials and Properties of Fiber Concrete. In Proceedings of the International Symposium on Fiber Reinforced Concrete, Madras, India, 16–19 December 1987; Volume 1, pp. 2.3–2.23. [Google Scholar]
- Marar, K.; Eren, Ö. Effect of cement content and water/cement ratio on fresh concrete properties without admixtures. Int. J. Phys. Sci. 2011, 6, 5752–5765. [Google Scholar] [CrossRef]
- Johnston, C.D. Measures of the Workability of Steel Fiber Reinforced Concrete and Their Precision. Cem. Concr. Aggreg. 1984, 6, 74–83. [Google Scholar]
- Kriker, A.; Debicki, G.; Bali, A.; Khenfer, M.M.; Chabannet, M. Mechanical properties of date palm fibers and concrete reinforced with date palm fibers in hot-dry climate. Cem. Concr. Compos. 2005, 27, 554–564. [Google Scholar] [CrossRef]
- Boutarfa, M.; Belouettar, R.; Makradi, A. Comparative Study of Cement Mortar Reinforced with Vegetal Fibers Alfa, Date Palm and Diss: Mechanical Properties and Shrinkage. J. Mater. Environ. Sci. 2018, 9, 2304–2314. [Google Scholar]
- Aziz, M.A.; Paramaswivam, P.; Lee, S.L. Concrete Reinforced with Natural Fibers. In Concrete Technology and Design; Swamy, R.N., Ed.; New Reinforced Concretes; Surrey University Press: Guildford, UK, 1984; Volume 2, pp. 106–140. [Google Scholar]
- Nando, G.B.; Gupta, B.R. Short Fiber-Thermoplastic Elastomer Composites; De, S.K., White, J.R., Eds.; Short Fiber-Polymer Composites; Woodhead Publishing: Cambridge, UK, 1996; pp. 84–115. [Google Scholar]
- Sreekumar, P.; Joseph, K.; Unnikrishnan, G.; Thomas, S. A comparative study on mechanical properties of sisal-leaf fiber-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Compos. Sci. Technol. 2007, 67, 453–461. [Google Scholar] [CrossRef]
- Devi, L.U.; Bhagawan, S.S.; Thomas, S. Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J. Appl. Polym. Sci. 1997, 64, 1739–1748. [Google Scholar] [CrossRef]
- Sedan, D.; Pagnoux, C.; Smith, A.; Chotard, T. Interaction fiber de chanvre/ciment: Influence sur les propriétés mécaniques du composite. Groupe d’Étude des Matériaux Hétérogènes (GEMH, EA 3178). Matériaux Tech. 2007, 95, 133–142. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rashid, M.H.; Hossain, M.A.; Hasan, M.T.; Hasan, M.K. Performance evaluation of Bamboo-reinforced Concrete beam. Int. J. Eng. Technol. 2011, 11, 113–118. [Google Scholar]
- Page, J. Formulation et Caractérisation d’un Composite Cimentaire Biofibré pour des Procédés de Construction Préfabriquée. Ph.D. Dissertation, Normandie Université, Caen, France, 2017. [Google Scholar]
- Hoff, G. Durability of Fiber Reinforced Concrete in a Severe Marine Environment. In Fiber Reinforced Concrete Properties and Applications; SP-105; American Concrete Institute: Detroit, MI, USA, 1987; pp. 997–1041. [Google Scholar]
- Balaguru, P.; Ramakrishnan, V. Properties of Fiber Reinforced Concrete: Workability Behavior Under Long Term Loading and Air-Void Characteristics. ACI Mater. J. 1988, 85, 189–196. [Google Scholar]
- Grzybowski, M.; Shah, S.P. Shrinkage Cracking in Fiber Reinforced Concrete. ACI Mater. J. 1990, 87, 138–148. [Google Scholar]
- Malmberg, B.; Skarendahl, A. Method of Studying the Cracking of Fiber Concrete under Restrained Shrinkage. In Proceedings of the RILEM Symposium on Testing and Test Methods of Fiber Cement Composites, Sheffield, UK, 5–7 April 1978; Construction Press: Lancaster, UK, 1978; pp. 173–179. [Google Scholar]
- Neville, A.M. Properties of Concrete, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 1996; p. 844. [Google Scholar]
- Mehta, P.K. Concrete-Structure, Properties and Materials; Prentice-Hall: Hoboken, NJ, USA, 1986; p. 450. [Google Scholar]
- Mindess, S.; Young, J.F.; Darwin, D. Concrete, 2nd ed.; Pearson Education: London, UK, 2003; p. 644. [Google Scholar]
- Khelifa, M.R.; Leklou, N.; Bellal, T.; Hebert, R.L.; Ledesert, B.A. Is alfa a vegetal fiber suitable for making green reinforced structure concrete? Eur. J. Environ. Civ. Eng. 2018, 22, 686–706. [Google Scholar] [CrossRef]
- Zhang, J.; Li, V.C. Influences of Fibers on Drying Shrinkage of Fiber-Reinforced Cementitious Composite. J. Eng. Mech. 2001, 127, 37–44. [Google Scholar] [CrossRef]
- Onésippe, C.; Passe-Coutrin, N.; Toro, F.; Delvasto, S.; Bilba, K.; Arsène, M.A. Sugar cane bagasse fibers reinforced cement composites: Thermal considerations. Compos. Part A Appl. Sci. Manuf. 2010, 41, 549–556. [Google Scholar] [CrossRef]
Flax | Hemp | Miscanthus | Bamboo | |
---|---|---|---|---|
lnom = 5 mm | 2 | 2 | 3.5 | 3.5 |
lnom = 15 mm | 4 | 4 | 7.5 | 7.5 |
Components | SiO2 | Al2O3 | CaO | MgO | SO3 | MnO | TiO2 | Cl | K2O | SrO |
---|---|---|---|---|---|---|---|---|---|---|
Proportions | 15.30 | 4.07 | 3.53 | 68.48 | 2.10 | 4.19 | 0.05 | 0.33 | 0.09 | 1.50 |
Water/Binder Ratio | Strength Class | Flow Class | Equivalent Binder (EN 206) | Sand | Adjuvant |
---|---|---|---|---|---|
0.61 | C20 | S4 | CEM II/A LL 42.5 R Limestone filler (382.5 kg/m3) | 0/4 (1251 kg/m3) | Fluidifier (4.73 kg/m3) |
kg/m3 | 0.4 | 0.6 | 0.8 | 1.2 | 2 |
---|---|---|---|---|---|
Fiber volume % | 0.03 | 0.04 | 0.06 | 0.08 | 0.14 |
Fiber dosage: 0.4 kg/m3 | F5 | F15 | H5 | H15 | M5 | M15 | B5 | B15 |
Water added (kg/m3) | 249.40 | 249.31 | 249.31 | 249.29 | 249.72 | 249.84 | 249.16 | 249.12 |
Fiber dosage: 4 kg/m3 | F5 | F15 | H5 | H15 | M5 | M15 | B5 | B15 |
Water added (kg/m3) | 255.13 | 254.23 | 254.23 | 254.04 | 258.37 | 259.53 | 252.78 | 252.38 |
Aspect Ratio of Raw Fibers (L/D) | Aspect Ratio of Fiber (L/D) Mixed with Mortar | |
---|---|---|
H5 | 2/0.194 = 10 | 2/0.013 = 154 |
H15 | 4/0.194 = 20 | 4/0.013 = 308 |
F5 | 2/0.054 = 37 | 2/0.012 = 167 |
F15 | 4/0.054 = 74 | 4/0.012 = 333 |
M5 | 3.5/0.276 = 13 | 3.5/0.276 = 13 |
M15 | 7.5/0.276 = 27 | 7.5/0.276 = 27 |
B5 | 3.5/0.205 = 17 | 3.5/0.205 = 17 |
B15 | 7.5/0.205 = 37 | 7.5/0.205 = 37 |
Mortar Mix | Dosage (kg/m3) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4 | CS (%) | 0.6 | CS (%) | 0.8 | CS (%) | 1.2 | CS (%) | 2 | CS (%) | 4 | CS (%) | |
F5 | 2211.7 | 1.51 | 2213.7 | 1.42 | 2201.0 | 1.98 | 2198.4 | 2.10 | 2154.6 | 4.05 | 2005.2 | 10.70 |
F15 | 2214.7 | 1.37 | 2210.0 | 1.58 | 2211.8 | 1.50 | 2181.1 | 2.87 | 2141.8 | 4.62 | 1991.7 | 11.30 |
H5 | 2228.7 | 0.75 | 2221.7 | 1.06 | 2220.0 | 1.14 | 2160.9 | 3.77 | 2149.8 | 4.26 | 1993.1 | 11.24 |
H15 | 2219.8 | 1.14 | 2218.9 | 1.18 | 2220.0 | 1.14 | 2159.0 | 3.85 | 2147.9 | 4.35 | 1975.7 | 12.02 |
M5 | 2225.0 | 0.91 | 2230.0 | 0.69 | 2227.8 | 0.79 | 2225.3 | 0.90 | 2222.7 | 1.02 | 2193.9 | 2.30 |
M15 | 2227.3 | 0.81 | 2230.0 | 0.69 | 2228.4 | 0.76 | 2199.7 | 2.04 | 2180.0 | 2.92 | 2172.8 | 3.24 |
B5 | 2236.6 | 0.40 | 2235.8 | 0.43 | 2236.8 | 0.39 | 2205.5 | 1.78 | 2202.5 | 1.91 | 2189.7 | 2.48 |
B15 | 2231.2 | 0.64 | 2234.2 | 0.50 | 2228.8 | 0.74 | 2221.8 | 1.06 | 2221.5 | 1.07 | 2195.3 | 2.24 |
Mortar Mix | Dosage (kg/m3) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4 | CS (%) | 0.6 | CS (%) | 0.8 | CS (%) | 1.2 | CS (%) | 2 | CS (%) | 4 | CS (%) | |
F5 | 3.60% | 20.00 | 3.70% | 23.33 | 4% | 33.33 | 4.10% | 36.67 | 4.40% | 46.67 | 5.10% | 70.00 |
F15 | 3.50% | 16.67 | 3.40% | 13.33 | 3.80% | 26.67 | 3.60% | 20.00 | 4.10% | 36.67 | 4.80% | 60.00 |
H5 | 3.70% | 23.33 | 3.60% | 20.00 | 3.70% | 23.33 | 4.40% | 46.67 | 4.50% | 50.00 | 5.20% | 73.33 |
H15 | 3.60% | 20.00 | 3.50% | 16.67 | 3.60% | 20.00 | 4.10% | 36.67 | 4.30% | 43.33 | 5.40% | 80.00 |
M5 | 3.40% | 13.33 | 3.20% | 6.67 | 3.10% | 3.33 | 3.20% | 6.67 | 3.40% | 13.33 | 4.10% | 36.67 |
M15 | 3.10% | 3.33 | 3.20% | 6.67 | 3.30% | 10.00 | 3.50% | 16.67 | 4.00% | 33.33 | 4.60% | 53.33 |
B5 | 3.20% | 6.67 | 3.30% | 10.00 | 3.30% | 10.00 | 3.10% | 3.33 | 3.40% | 13.33 | 4.00% | 33.33 |
B15 | 3.30% | 10.00 | 3.20% | 6.67 | 3.40% | 13.33 | 3.20% | 6.67 | 3.60% | 20.00 | 4.20% | 40.00 |
(a) | ||||||||||||
Mortar Mix | Dosage (kg/m3) | |||||||||||
0.4 | AS (%) | 0.6 | AS (%) | 0.8 | AS (%) | 1.2 | AS (%) | 2 | AS (%) | 4 | AS (%) | |
F5 | 6.55 | 24.79 | 5.96 | 13.52 | 6.46 | 23.13 | 5.97 | 13.66 | 7.05 | 34.34 | 5.44 | 3.60 |
F15 | 7.27 | 38.61 | 6.50 | 23.84 | 7.01 | 33.63 | 6.96 | 32.55 | 6.83 | 30.16 | 5.41 | 3.16 |
H5 | 8.28 | 57.77 | 5.97 | 13.75 | 7.20 | 37.15 | 6.10 | 16.23 | 6.59 | 25.50 | 5.83 | 11.18 |
H15 | 7.15 | 36.29 | 6.00 | 14.39 | 7.30 | 39.04 | 6.71 | 27.83 | 6.78 | 29.10 | 5.18 | −1.32 |
M5 | 6.56 | 24.92 | 6.66 | 26.87 | 6.77 | 28.92 | 7.37 | 40.35 | 7.57 | 44.30 | 6.27 | 19.56 |
M15 | 7.06 | 34.60 | 6.55 | 24.82 | 7.22 | 37.49 | 7.32 | 39.55 | 7.47 | 42.32 | 6.30 | 19.95 |
B5 | 6.89 | 31.30 | 6.83 | 30.19 | 6.47 | 23.29 | 7.34 | 39.95 | 7.89 | 50.33 | 6.84 | 30.28 |
B15 | 6.94 | 32.27 | 6.57 | 25.11 | 7.07 | 34.64 | 6.58 | 25.35 | 7.81 | 48.82 | 6.89 | 31.33 |
(b) | ||||||||||||
Mortar Mix | Dosage (kg/m3) | |||||||||||
0.4 | AS (%) | 0.6 | AS (%) | 0.8 | AS (%) | 1.2 | AS (%) | 2 | AS (%) | 4 | AS (%) | |
F5 | 6.76 | 28.86 | 5.51 | 4.92 | 6.48 | 23.50 | 6.91 | 31.76 | 7.52 | 43.34 | 6.81 | 29.76 |
F15 | 6.58 | 25.36 | 7.20 | 37.18 | 6.33 | 20.62 | 7.97 | 51.79 | 7.18 | 36.84 | 6.65 | 26.71 |
H5 | 7.76 | 47.78 | 6.49 | 23.74 | 5.72 | 9.05 | 8.96 | 70.79 | 7.27 | 38.60 | 6.70 | 27.67 |
H15 | 6.30 | 20.07 | 6.08 | 15.83 | 5.37 | 2.34 | 8.19 | 56.15 | 6.87 | 30.88 | 6.02 | 14.71 |
M5 | 7.07 | 34.74 | 7.17 | 36.65 | 6.98 | 33.01 | 7.42 | 41.34 | 8.08 | 53.94 | 8.19 | 56.06 |
M15 | 6.82 | 29.91 | 7.45 | 41.94 | 7.13 | 35.80 | 7.97 | 51.82 | 8.23 | 56.87 | 8.18 | 55.87 |
B5 | 7.14 | 35.99 | 6.49 | 23.59 | 7.10 | 35.22 | 7.75 | 47.61 | 8.74 | 66.53 | 8.39 | 59.87 |
B15 | 6.95 | 32.37 | 7.28 | 38.69 | 6.81 | 29.68 | 7.73 | 47.22 | 8.66 | 65.01 | 8.50 | 61.97 |
(a) | |||||||||||||
Mortar mix | Dosage (kg/m3) | ||||||||||||
0.4 | AS (%) | 0.6 | AS (%) | 0.8 | AS (%) | 1.2 | AS (%) | 2 | AS (%) | 4 | AS (%) | ||
F5 | 27.55 | 38.74 | 24.61 | 23.93 | 26.06 | 31.22 | 25.79 | 29.86 | 28.61 | 44.07 | 21.61 | 8.82 | |
F15 | 28.03 | 41.16 | 27.01 | 36.00 | 27.11 | 36.54 | 28.50 | 43.53 | 26.12 | 31.53 | 20.86 | 5.04 | |
H5 | 27.69 | 39.42 | 24.60 | 23.88 | 25.29 | 27.35 | 27.07 | 36.32 | 27.30 | 37.47 | 22.68 | 14.21 | |
H15 | 26.76 | 34.73 | 24.20 | 21.85 | 24.20 | 21.87 | 28.50 | 43.52 | 24.61 | 23.91 | 18.95 | −4.57 | |
M5 | 26.62 | 34.03 | 27.05 | 36.20 | 27.72 | 39.59 | 32.35 | 62.89 | 31.55 | 58.86 | 25.82 | 30.02 | |
M15 | 27.69 | 39.44 | 27.21 | 37.02 | 28.84 | 45.24 | 31.26 | 57.39 | 31.11 | 56.66 | 26.15 | 31.68 | |
B5 | 32.14 | 61.82 | 27.87 | 40.36 | 30.05 | 51.31 | 32.88 | 65.59 | 31.26 | 57.41 | 29.81 | 50.12 | |
B15 | 31.54 | 58.84 | 27.31 | 37.54 | 29.11 | 46.57 | 31.27 | 57.44 | 32.37 | 63.00 | 28.60 | 44.01 | |
(b) | |||||||||||||
Mortar mix | Dosage (kg/m3) | ||||||||||||
0.4 | AS (%) | 0.6 | AS (%) | 0.8 | AS (%) | 1.2 | AS (%) | 2 | AS (%) | 4 | AS (%) | ||
F5 | 31.70 | 46.50 | 26.46 | 22.27 | 29.92 | 38.26 | 26.85 | 24.08 | 28.95 | 33.77 | 23.36 | 7.96 | |
F15 | 31.17 | 44.07 | 29.09 | 34.41 | 31.20 | 44.18 | 30.32 | 40.10 | 28.98 | 33.92 | 22.75 | 5.14 | |
H5 | 30.72 | 41.95 | 27.03 | 24.92 | 27.16 | 25.52 | 34.61 | 59.95 | 27.54 | 27.27 | 23.27 | 7.54 | |
H15 | 30.63 | 41.55 | 25.88 | 19.59 | 24.50 | 13.24 | 30.99 | 43.20 | 26.02 | 20.23 | 21.43 | −0.96 | |
M5 | 32.90 | 52.05 | 30.45 | 40.74 | 32.25 | 49.02 | 33.91 | 56.73 | 34.00 | 57.12 | 27.51 | 27.13 | |
M15 | 32.07 | 48.20 | 30.96 | 43.10 | 31.04 | 43.43 | 33.10 | 52.95 | 33.45 | 54.59 | 29.17 | 34.81 | |
B5 | 32.69 | 51.08 | 29.85 | 37.95 | 33.06 | 52.77 | 36.06 | 66.65 | 33.69 | 55.71 | 31.67 | 46.36 | |
B15 | 34.72 | 60.45 | 30.64 | 41.59 | 31.91 | 47.46 | 34.14 | 57.78 | 34.00 | 57.14 | 29.10 | 34.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pons Ribera, S.; Hamzaoui, R.; Colin, J.; Bessette, L.; Audouin, M. Valorization of Vegetal Fibers (Hemp, Flax, Miscanthus and Bamboo) in a Fiber Reinforced Screed (FRS) Formulation. Materials 2023, 16, 2203. https://doi.org/10.3390/ma16062203
Pons Ribera S, Hamzaoui R, Colin J, Bessette L, Audouin M. Valorization of Vegetal Fibers (Hemp, Flax, Miscanthus and Bamboo) in a Fiber Reinforced Screed (FRS) Formulation. Materials. 2023; 16(6):2203. https://doi.org/10.3390/ma16062203
Chicago/Turabian StylePons Ribera, Sergio, Rabah Hamzaoui, Johan Colin, Laetitia Bessette, and Marie Audouin. 2023. "Valorization of Vegetal Fibers (Hemp, Flax, Miscanthus and Bamboo) in a Fiber Reinforced Screed (FRS) Formulation" Materials 16, no. 6: 2203. https://doi.org/10.3390/ma16062203
APA StylePons Ribera, S., Hamzaoui, R., Colin, J., Bessette, L., & Audouin, M. (2023). Valorization of Vegetal Fibers (Hemp, Flax, Miscanthus and Bamboo) in a Fiber Reinforced Screed (FRS) Formulation. Materials, 16(6), 2203. https://doi.org/10.3390/ma16062203