Synthesis and Characterization of Al Chip-Based Syntactic Foam Containing Glass Hollow Spheres Fabricated by a Semi-Solid Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Syntactic Foams
2.2. Microstructural Analysis
2.3. Mechanical Property Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Georgantzia, E.; Gkantou, M.; Kamaris, G.S. Aluminium alloys as structural material: A review of research. Eng. Struct. 2021, 227, 111372. [Google Scholar] [CrossRef]
- Shamsipour, M.; Pahlevani, Z.; Shabani, M.O.; Mazahery, A. Squeeze casting of electromagnetically stirred aluminum matrix nanocomposites in semi-solid condition using hybrid algorithm optimized parameters. Kov. Mater. 2017, 55, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Amirkhanlou, S.; Ji, S. Casting lightweight stiff aluminum alloys: A review. Crit. Rev. Solid State Mater. Sci. 2020, 45, 171–186. [Google Scholar] [CrossRef]
- Kannan, S.; Kishawy, H.A.; Pervaiz, S.; Thomas, K.; Karthikeyan, R.; Arunachalam, R. Machining of novel AA7075 foams containing thin-walled ceramic bubbles. Mater. Manuf. Process. 2020, 35, 1812–1821. [Google Scholar] [CrossRef]
- Yingfei, L.; Qiang, Z.; Jing, C.; Haiyan, W.; Xiaowei, F.; Juan, W. Microstructural characterization and compression mechanical response of glass hollow spheres/Al syntactic foams with different Mg additions. Mater. Sci. Eng. A 2019, 766, 138338. [Google Scholar] [CrossRef]
- Su, M.; Wang, H.; Hao, H. Compressive properties of aluminum matrix syntactic foams prepared by stir casting method. Adv. Eng. Mater. 2019, 21, 1900183. [Google Scholar] [CrossRef]
- Walter, T.R.; Sietins, J.; Moy, P. Evaluation of syntactic foam for energy absorption at low to moderate loading rates. In Advanced Composites for Aerospace, Marine, and Land Applications II; Sano, T., Srivatsan, T.S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 233–244. ISBN 978-3-319-48141-8. [Google Scholar]
- Kartheek, S.M.; Vincent, S.; Suresh, K.R.N. Effect of single and hybrid hollow sphere reinforcement on the deformation mechanism of aluminum matrix syntactic foam at low strain rate. J. Alloy. Compd. 2022, 901, 163573. [Google Scholar] [CrossRef]
- Mengxin, C.; Fengchun, J.; Chunhuan, G.; Yanchun, L.; Tianmiao, Y.; Ruonan, Q. Interface characterization and mechanical property of an aluminum matrix syntactic foam with multi-shelled hollow sphere structure. Ceram. Int. 2022, 48, 18821–18833. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, J.; Wang, L.; Jiang, Y.; Wang, W.; Wu, G. Bending behavior of cenosphere aluminum matrix syntactic foam-filled circular tube. Eng. Struct. 2021, 243, 112650. [Google Scholar] [CrossRef]
- Sonti, K.S.M.; Vincent, S.; Narala, S.K.R. Quasi-static compressive response and energy absorption properties of aluminum matrix syntactic foams: Room temperature and elevated temperature conditions. Mater. Today Commun. 2023, 35, 105580. [Google Scholar] [CrossRef]
- Katona, B.; Szlancsik, A.; Tabi, T.; Orbulov, I.N. Compressive characteristics and low frequency damping of aluminium matrix syntactic foams. Mater. Sci. Eng. A 2019, 739, 140–148. [Google Scholar] [CrossRef]
- Szlancsik, A.; Norbert Orbulov, I. Compressive properties of metal matrix syntactic foams in uni- and triaxial compression. Mater. Sci. Eng. A 2021, 827, 142081. [Google Scholar] [CrossRef]
- Jung, J.; Kim, S.H.; Kang, J.H.; Park, J.; Kim, W.K.; Lim, C.Y.; Park, Y.H. Compressive strength modeling and validation of cenosphere-reinforced aluminum-magnesium-matrix-based syntactic foams. Mater. Sci. Eng. A 2022, 849, 143452. [Google Scholar] [CrossRef]
- Wang, N.; Chen, X.; Li, Y.; Liu, Y.; Zhang, H.; Wang, X. Preparation and compressive performance of an A356 matrix syntactic foam. Mater. Trans. 2018, 59, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Kemeny, A.; Leveles, B.; Bubonyi, T.; Orbulov, I.N. Effect of particle size and volume ratio of ceramic hollow spheres on the mechanical properties of bimodal composite metal foams. Compos. Part A 2021, 140, 106152. [Google Scholar] [CrossRef]
- Su, M.; Li, J.; Li, M.; Hao, H. Microstructure and mechanical properties of bimodal syntactic foams with different size combination and volume fraction of alumina hollow spheres. Mater. Sci. Eng. A 2021, 824, 141798. [Google Scholar] [CrossRef]
- Bolat, C.; Akgun, I.C.; Goksenli, A. Effect of aging heat treatment on compressive characteristics of bimodal aluminum syntactic foams produced by cold chamber die casting. Int. J. Met. 2022, 16, 646–662. [Google Scholar] [CrossRef]
- Son, Y.G.; Jung, S.S.; Park, Y.H.; Lee, Y.C. Effect of semi-solid processing on the microstructure and mechanical properties of aluminum alloy chips with eutectic Mg2Si intermetallics. Metals 2021, 11, 1414. [Google Scholar] [CrossRef]
- Pola, A.; Tocci, M.; Kapranos, P. Microstructure and properties of semi-solid aluminum alloys: A literature review. Metals 2018, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Abdelgnei, M. The effect of the rheocast process on the microstructure and mechanical properties of Al-5.7Si-2Cu-0.3Mg alloy. J. Kejuruter. 2019, 31, 317–326. [Google Scholar] [CrossRef]
- Wan, B.; Chen, W.; Lu, T.; Liu, F.; Jiang, Z. Resources, conservation & recycling review of solid state recycling of aluminum chips. Resour. Conserv. Recycl. 2017, 125, 37–47. [Google Scholar] [CrossRef]
- ASTM E 92-17; Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2017.
- Le Bourhis, E. Glass: Mechanics and Technology, 2nd ed.; Rene Gy, S.G., Ed.; Wiley-VCH: Hoboken, NJ, USA, 2007. [Google Scholar]
- Jamaludin, S.B.; Josef, H.; Mohd, F.M.W.; Hussin, K.; Azmi, R. Microstructure and interface analysis of glass particulate reinforced aluminum matrix composite. Adv. Mater. Res. 2013, 795, 578–581. [Google Scholar] [CrossRef]
- Boyi, Z.; Li, W.; Jian, Z.; Yuexin, J.; Wei, W.; Gaohui, W. Deformation and energy absorption preperties of cenosphere/aluminum syntactic foam-filled circular tubes under lateral quasi-static compression. Int. J. Mech. Sci. 2021, 192, 106–126. [Google Scholar] [CrossRef]
- Liang-Jing, F.; Shueiwan, J. Reaction effect of Fly Ash with Al-3Mg melt on the microstructure and hardness of aluminum matrix composites. Mater. Des. 2015, 15, 941–949. [Google Scholar]
- Schultz, B.F.; Ferguson, J.B.; Rohatgi, P.K. Mucrostructure and hardness of Al2O3 nanoparticle reinforced Al-Mg composites fabricated by reactive wetting and stir mixing. Mater. Sci. Eng. A 2011, 530, 87–97. [Google Scholar] [CrossRef]
- Kim, B.; Hwang, J.; Park, Y.; Lee, Y. Microstructural improvement of eutectic Al + Mg2Si phases on Al–Zn–Si–Mg cast alloy with TiB2 particles additions. Materials 2021, 14, 2902. [Google Scholar] [CrossRef]
- Sudha, G.T.; Stalin, B.; Ravichandran, M.; Balasubramanian, M. Mechanical properties, characterization and wear behavior of powder metallurgy composites—A review. Mater. Today 2020, 22, 2582–2596. [Google Scholar] [CrossRef]
- Canakci, A.; Varol, T. Microstructure and properties of AA7075/Al-SiC composites fabricated using powder metallurgy and hot pressing. Powder. Tech. 2014, 268, 72–79. [Google Scholar] [CrossRef]
- Yong, H.; Sheng-qi, F.; Long-zhi, Z.; Da-hao, W.; Fei, L. Microstructure evolution of semi-solid Mg2Si/A356 composites during remelting process. Res. Dev. 2020, 17, 384–388. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Y.; Wang, Y.; Xiao, G.; Liu, Y.; Zeng, L. Microstructure and mechanical properties of thixoforged complex box-type component of 2A12 aluminum alloy. Mater. Des. 2020, 193, 108859. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, J.; Wang, Y.; Xiao, G.; Liu, Y.; Huang, M. Recrystallization process of hot-extruded 6A02 aluminum alloy in solid and semi-solid temperature ranges. J. Alloy. Compd. 2022, 893, 162311. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Ji, Z.S.; Sun, L.X.; Xu, H.Y. Microstructure of semi-solid ADC12 aluminum alloy adopting new SIMA method. Trans. Nonferrous Met. Soc. China Engl. Ed. 2010, 20, s744–s748. [Google Scholar] [CrossRef]
- Kim, B.J.; Jung, S.S.; Hwang, J.H.; Park, Y.H.; Lee, Y.C. Effect of eutectic Mg2si phase modification on the mechanical properties of Al-8Zn-6Si-4Mg-2Cu cast alloy. Metals 2019, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Campbell, J. Oxide inclusion defects in Al-Si-Mg cast alloys oxide inclusion defects in Al-Si-Mg cast alloys. Can. Metall. Q. 2005, 44, 435–448. [Google Scholar] [CrossRef]
- Sanchez, J.M.; Vicario, I.; Albizuri, J.; Guraya, T.; Acuña, E.M. Design, Microstructure and mechanical properties of cast medium entropy aluminium alloys. Sci. Rep. 2019, 9, 6792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.; Kang, J.; Kim, S.; Park, J.; Kim, W.; Lee, Y.; Lim, C.; Park, Y.H. Redox-reaction phenomenon in cenosphere reinforced aluminum alloy matrix syntactic foam. J. Alloy. Compd. 2021, 862, 158686. [Google Scholar] [CrossRef]
- Zhong, W.M.; Sue, M. Effect of current Mg concentration on interfacial reactions during remelting of Al–Mg(5083)/Al2O3p composites. Mater. Charact. 2003, 49, 113–119. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, Q.; Wu, G. Interfacial microstructure and compressive properties of Al-Mg syntactic foam reinforced with glass cenospheres. J. Alloy. Compd. 2016, 655, 301–308. [Google Scholar] [CrossRef]
- Mahbubul, M.; Seong, B.; Cheon, S. Time-dependent crashworthiness of polyurethane foam. Mech Time-Depend. Mater. 2019, 23, 207–221. [Google Scholar] [CrossRef]
- Su, M.; Wang, H.; Hao, H.; Fiedler, T. Compressive properties of expanded glass and alumina hollow spheres hybrid reinforced aluminum matrix syntactic foams. J. Alloy. Compd. 2020, 821, 153233. [Google Scholar] [CrossRef]
- Orbulov, I.N.; Kemény, A.; Filep, Á.; Gácsi, Z. Compressive characteristics of bimodal aluminium matrix syntactic foams. Compos. Part A 2019, 124, 105479. [Google Scholar] [CrossRef] [Green Version]
- Lehmhus, D.; Weise, J.; Szlancsik, A. Fracture toughness of hollow glass microsphere-filled iron matrix syntactic foams. Materials 2020, 13, 2566. [Google Scholar] [CrossRef]
- Weise, J.; Lehmhus, D.; Baumeister, Ã.J.; Kun, R.; Bayoumi, M. Production and properties of 316L stainless steel cellular materials and syntactic foams. Steel Res. Int. 2014, 85, 486–497. [Google Scholar] [CrossRef]
- Sonika, S.; Mohd, Z.A.; Dehi, P.M.; Chongdu, C. Quasi-static compressive behaviour of aluminium cenosphere syntactic foams. Mater. Sci. Technol. 2019, 85, 486–497. [Google Scholar] [CrossRef]
- Taherishargh, M.; Belova, I.V.; Murch, G.E.; Fiedler, T. Pumice/aluminium syntactic foam. Mater. Sci. Eng. A 2015, 635, 102–108. [Google Scholar] [CrossRef]
- Boyi, Z.; Yingfei, L.; Shuo, L.; Dongxian, Z.; Gaohui, W. Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams. Compos. Part B 2016, 98, 288–296. [Google Scholar] [CrossRef]
- Yingfei, L.; Qiang, Z.; Fuyang, Z.; Jing, C.; Gaohui, W. Microstructure and strength correlation of pure Al and Al-Mg syntactic foam composites subject to uniaxial compression. Mater. Sci. Eng. A 2017, 696, 236–247. [Google Scholar] [CrossRef]
- Akeem, D.; Jeleel, A.A.; Adeolu, A.A. Compressive characteristics of aluminum-fly ash syntactic foams processed by microwave sintering. Miner. Met. Mater. Soc. 2019, 50, 4257–4260. [Google Scholar] [CrossRef]
- Tao, X.F.; Zhao, Y.Y. Compressive behavior of Al matrix syntactic foams toughened with Al particles. Scr. Mater. 2009, 61, 461–464. [Google Scholar] [CrossRef]
Specimen | Al Chip Volume Fraction (%) | GHS Volume Fraction (%) |
---|---|---|
Al50G5 | 50 | 5 |
Al50G10 | 50 | 10 |
Al50G15 | 50 | 15 |
Al60G5 | 60 | 5 |
Al60G10 | 60 | 10 |
Al60G15 | 60 | 15 |
Al70G5 | 70 | 5 |
Al70G10 | 70 | 10 |
Al70G15 | 70 | 15 |
Elements | Zn | Si | Mg | Cu | Al |
---|---|---|---|---|---|
wt.% | 7.94 | 5.99 | 4.01 | 1.98 | Bal. |
Elements | SiO2 | Na2O | CaO | Al2O3 | MgO | Etc. |
---|---|---|---|---|---|---|
wt.% | 73.16 | 12.74 | 10.24 | 1.36 | 1.32 | 1.18 |
Elements | Si | O | Ca | Na | Mg | Etc. |
---|---|---|---|---|---|---|
wt.% | 28.01 | 62.32 | 6.69 | 2.77 | 0.1 | 0.11 |
Elements | Si | O | Ca | Na | Mg | Al | Etc. |
---|---|---|---|---|---|---|---|
wt.% | 28.05 | 61.20 | 6.37 | 3.96 | 0.14 | 0.11 | 0.17 |
Elements | Al | Si | O | Mg |
---|---|---|---|---|
wt.% | 33.89 | 1.19 | 52.92 | 12 |
Specimen | Compressive Strength (MPa) | Plateau Strength (MPa) | Energy Absorption, W (MJ/M3) | Energy Absorption Efficiency |
---|---|---|---|---|
Al chip | 437.6 ± 1.2 | 489.8 ± 2.3 | 2.41 ± 1.1 | 0.49 ± 0.23 |
Al50G5 | 230.53 ± 4.4 | 292.71 ± 2.2 | 17.73 ± 3.7 | 6.0 ± 0.18 |
Al50G10 | 225.48 ± 4.7 | 377.82 ± 3.3 | 46.47 ± 4.1 | 12.29 ± 0.27 |
Al50G15 | 151.1 ± 6.1 | 173.21 ± 5.3 | 8.66 ± 2.4 | 5 ± 0.34 |
Al60G5 | 264.51 ± 8.1 | 315.13 ± 4.0 | 18.43 ± 4.2 | 5.8 ± 0.14 |
Al60G10 | 251.32 ± 6.7 | 387.24 ± 3.5 | 47.56 ± 3.5 | 12.28 ± 0.14 |
Al60G15 | 166.65 ± 5.3 | 210.31 ± 4.21 | 10.82 ± 3.1 | 5.1 ± 0.41 |
Al70G5 | 288.74 ± 5.2 | 338.72 ± 4.6 | 17.2 ± 5.4 | 5.07 ± 0.12 |
Al70G10 | 281.51 ± 6.4 | 411.14 ± 6.2 | 46.41 ± 2.2 | 11.2 ± 0.36 |
Al70G15 | 213.92 ± 3.8 | 251.13 ± 7.4 | 13.43 ± 4.6 | 5.3 ± 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, Y.-G.; Park, Y.-H. Synthesis and Characterization of Al Chip-Based Syntactic Foam Containing Glass Hollow Spheres Fabricated by a Semi-Solid Process. Materials 2023, 16, 2304. https://doi.org/10.3390/ma16062304
Son Y-G, Park Y-H. Synthesis and Characterization of Al Chip-Based Syntactic Foam Containing Glass Hollow Spheres Fabricated by a Semi-Solid Process. Materials. 2023; 16(6):2304. https://doi.org/10.3390/ma16062304
Chicago/Turabian StyleSon, Yong-Guk, and Yong-Ho Park. 2023. "Synthesis and Characterization of Al Chip-Based Syntactic Foam Containing Glass Hollow Spheres Fabricated by a Semi-Solid Process" Materials 16, no. 6: 2304. https://doi.org/10.3390/ma16062304
APA StyleSon, Y. -G., & Park, Y. -H. (2023). Synthesis and Characterization of Al Chip-Based Syntactic Foam Containing Glass Hollow Spheres Fabricated by a Semi-Solid Process. Materials, 16(6), 2304. https://doi.org/10.3390/ma16062304