Experimental and Statistical Study on the Properties of Basic Oxygen Furnace Slag and Ground Granulated Blast Furnace Slag Based Alkali-Activated Mortar
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Raw Materials
2.2. Design of Experiment, Model Efficacy Evaluation, and Mix Proportion
2.3. Specimen Preparation
2.4. Laboratory Experimental Program
2.4.1. Flow
2.4.2. Compressive Strength
2.4.3. Flexural Strength
2.4.4. Water Absorption and Permeable Pore Volume
2.4.5. Microstructural Analysis
3. Results and Discussion
3.1. Fresh, Hardened, and Microstructural Properties
3.1.1. Flow
3.1.2. Compressive Strength
3.1.3. Flexural Strength
3.1.4. Water Absorption and Volume of Permeable pores
3.1.5. SEM-EDS Analysis
3.2. Analysis of Variance and Regression Model Equations
3.3. Perturbation and Normal Probability Plots
3.4. Predicted vs. Actual Plots
3.5. Contour and 3D Response Surface Plots of the Responses
3.6. Predictive Performance of the Derived RSM Models
3.7. Optimization and Experimental Validation
4. Conclusions
- The compressive strength of AAM samples activated with 6 M NaOH reached about 30 MPa and was superior to those activated using 2 and 10 M. In addition, increasing the BOFS content consistently decreased the compressive strength and flexural strength of AAM samples.
- The water absorption and permeable pore volumes of AAM samples significantly decreased with an increase in NaOH molarity, whereas they slightly increased with an increase in the BOFS ratio.
- The SEM observations revealed that increasing the NaOH molarity and reducing the BOFS ratio resulted in a denser microstructure, which is in agreement with the physical and mechanical test results.
- The ANOVA results revealed that the obtained response models were accurate and statistically significant. The proposed quadratic models can be appropriately used to predict the response by navigating the defined design space by FCCD.
- The optimal mix proportions of BOFS and NaOH molarity were found to be 24.61% and 7.74 M (optimization-1) for the efficient utilization of BOFS with a lower NaOH concentration. In addition, the optimal mix design of 20.00% BOFS and 8.90 M NaOH (optimization-2) performed better in achieving higher flow, greater compressive and flexural strengths, and lower water absorption.
- The proposed methodology can promote environmental benefits by utilizing BOFS to produce alkali-activated mortars. This method may also address the economic and environmental issues due to the disposal of BOFS. Furthermore, this study might also create awareness among steel manufacturers that are involved in BOFS generation by visualizing its commercial importance in construction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Amico, B.; Pomponi, F.; Hart, J. Global potential for material substitution in building construction: The case of cross laminated timber. J. Clean. Prod. 2020, 279, 123487. [Google Scholar] [CrossRef]
- Nehdi, M.L.; Yassine, A. Mitigating Portland Cement CO2 Emissions Using Alkali-Activated Materials: System Dynamics Model. Materials 2020, 13, 4685. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, I.Z.; Prezzi, M. Chemical, Mineralogical, and Morphological Properties of Steel Slag. Adv. Civ. Eng. 2011, 2011, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kabay, N.; Miyan, N.; Özkan, H. Basic oxygen furnace and ground granulated blast furnace slag based alkali-activated pastes: Characterization and optimization. J. Clean. Prod. 2021, 327, 129483. [Google Scholar] [CrossRef]
- Kim, S.H.; Jeong, S.; Chung, H.; Nam, K. Mechanism for Alkaline Leachate Reduction through Calcium Carbonate Precipita-tion on Basic Oxygen Furnace Slag by Different Carbonate Sources: Application of NaHCO3 and CO2 Gas. Waste Manag. 2020, 103, 122–127. [Google Scholar] [CrossRef]
- World Steel in Figures World Steel Association; Brussels, Belgium. 2020. Available online: www.worldsteel.org (accessed on 10 May 2021).
- Belhadj, E.; Diliberto, C.; Lecomte, A. Properties of hydraulic paste of basic oxygen furnace slag. Cem. Concr. Compos. 2014, 45, 15–21. [Google Scholar] [CrossRef]
- Euroslag Statistics. 2018. Available online: https://www.euroslag.com/products/statistics/statistics-2018/ (accessed on 5 October 2021).
- Chaurand, P.; Rose, J.; Domas, J.; Bottero, J.-Y. Speciation of Cr and V within BOF steel slag reused in road constructions. J. Geochem. Explor. 2006, 88, 10–14. [Google Scholar] [CrossRef]
- Lee, W.-H.; Cheng, T.-W.; Lin, K.-Y.; Lin, K.-L.; Wu, C.-C.; Tsai, C.-T. Geopolymer Technologies for Stabilization of Basic Oxygen Furnace Slags and Sustainable Application as Construction Materials. Sustainability 2020, 12, 5002. [Google Scholar] [CrossRef]
- Liu, C.; Guo, M.; Pandelaers, L.; Blanpain, B.; Huang, S. Stabilization of Free Lime in BOF Slag by Melting and Solidification in Air. Met. Mater. Trans. B 2016, 47, 3237–3240. [Google Scholar] [CrossRef]
- Morone, M.; Costa, G.; Polettini, A.; Pomi, R.; Baciocchi, R. Valorization of Steel Slag by a Combined Carbonation and Gran-ulation Treatment. Miner. Eng. 2014, 59, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Yan, P.; Han, S. The influence of steel slag on the hydration of cement during the hydration process of complex binder. Sci. China Technol. Sci. 2011, 54, 388–394. [Google Scholar] [CrossRef]
- Ma, M.; Mehdizadeh, H.; Guo, M.-Z.; Ling, T.-C. Effect of direct carbonation routes of basic oxygen furnace slag (BOFS) on strength and hydration of blended cement paste. Constr. Build. Mater. 2021, 304, 124628. [Google Scholar] [CrossRef]
- Lin, Y.; Yan, B.; Shu, Q.; Fabritius, T. Synergetic valorization of basic oxygen furnace slag and stone coal: Metal recovery and preparation of glass-ceramics. Waste Manag. 2021, 135, 158–166. [Google Scholar] [CrossRef]
- Sun, K.; Peng, X.; Chu, S.; Wang, S.; Zeng, L.; Ji, G. Utilization of BOF steel slag aggregate in metakaolin-based geopolymer. Constr. Build. Mater. 2021, 300, 124024. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-Activated Materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Davidovits, J.; Huaman, L.; Davidovits, R. Ancient organo-mineral geopolymer in South-American Monuments: Organic matter in andesite stone. SEM and petrographic evidence. Ceram. Int. 2019, 45, 7385–7389. [Google Scholar] [CrossRef]
- Alehyen, S.; Achouri, M.E.L.; Taibi, M. Characterization, Microstructure and Properties of Fly Ash-Based Geopolymer. J. Mater. Environ. Sci. 2017, 8, 1783–1796. [Google Scholar]
- Kabay, N.; Miyan, N. A Comparative Study on the Physical and Mechanical Properties of Alkali Activated Materials. Sigma 2020, 38, 649–658. [Google Scholar]
- Keulen, A.; van Zomeren, A.; Dijkstra, J. Leaching of monolithic and granular alkali activated slag-fly ash materials, as a function of the mixture design. Waste Manag. 2018, 78, 497–508. [Google Scholar] [CrossRef]
- Abdollahnejad, Z.; Mastali, M.; Luukkonen, T.; Kinnunen, P.; Illikainen, M. Fiber-reinforced one-part alkali-activated slag/ceramic binders. Ceram. Int. 2018, 44, 8963–8976. [Google Scholar] [CrossRef]
- Moudio, A.; Tchakouté, H.; Ngnintedem, D.; Andreola, F.; Kamseu, E.; Nanseu-Njiki, C.; Leonelli, C.; Rüscher, C. Influence of the synthetic calcium aluminate hydrate and the mixture of calcium aluminate and silicate hydrates on the compressive strengths and the microstructure of metakaolin-based geopolymer cements. Mater. Chem. Phys. 2021, 264, 124459. [Google Scholar] [CrossRef]
- Aboulayt, A.; Riahi, M.; Touhami, M.O.; Hannache, H.; Gomina, M.; Moussa, R. Properties of metakaolin based geopolymer incorporating calcium carbonate. Adv. Powder Technol. 2017, 28, 2393–2401. [Google Scholar] [CrossRef]
- Letelier, V.; Henríquez-Jara, B.I.; Manosalva, M.; Moriconi, G. Combined use of waste concrete and glass as a replacement for mortar raw materials. Waste Manag. 2019, 94, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Samarakoon, M.H.; Ranjith, P.G.; Duan, W.H.; Haque, A.; Chen, B.K. Extensive Use of Waste Glass in One-Part Alkali-Activated Materials: Towards Sustainable Construction Practices. Waste Manag. 2021, 130, 1–11. [Google Scholar] [CrossRef]
- Zhang, P.; Han, X.; Zheng, Y.; Wan, J.; Hui, D. Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concrete. Rev. Adv. Mater. Sci. 2021, 60, 418–437. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, K.; Wang, J.; Guo, J.; Ling, Y. Macroscopic and Microscopic Analyses on Mechanical Performance of Metakaolin/Fly Ash Based Geopolymer Mortar. J. Clean. Prod. 2021, 294, 126193. [Google Scholar] [CrossRef]
- Mashifana, T.; Sebothoma, J.; Sithole, T. Alkaline Activation of Basic Oxygen Furnace Slag Modified Gold Mine Tailings for Building Material. Adv. Civ. Eng. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Ozturk, M.; Bankir, M.B.; Bolukbasi, O.S.; Sevim, U.K. Alkali Activation of Electric Arc Furnace Slag: Mechanical Properties and Micro Analyzes. J. Build. Eng. 2019, 21, 97–105. [Google Scholar] [CrossRef]
- Rashad, A.M.; Khafaga, S.A.; Gharieb, M. Valorization of fly ash as an additive for electric arc furnace slag geopolymer cement. Constr. Build. Mater. 2021, 294, 123570. [Google Scholar] [CrossRef]
- Li, J.; Yu, Q.; Wei, J.; Zhang, T. Structural characteristics and hydration kinetics of modified steel slag. Cem. Concr. Res. 2011, 41, 324–329. [Google Scholar] [CrossRef]
- Apithanyasai, S.; Supakata, N.; Papong, S. The potential of industrial waste: Using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production. Heliyon 2020, 6, e03697. [Google Scholar] [CrossRef] [PubMed]
- Hui-Teng, N.; Cheng-Yong, H.; Yun-Ming, L.; Abdullah, M.M.A.B.; Hun, K.E.; Razi, H.M.; Yong-Sing, N. Formulation, Me-chanical Properties and Phase Analysis of Fly Ash Geopolymer with Ladle Furnace Slag Replacement. J. Mater. Res. Technol. 2021, 12, 1212–1226. [Google Scholar] [CrossRef]
- Yong-Sing, N.; Yun-Ming, L.; Cheng-Yong, H.; Abdullah, M.M.A.B.; Chan, L.W.L.; Hui-Teng, N.; Shee-Ween, O.; Wan-En, O.; Yong-Jie, H. Evaluation of flexural properties and characterisation of 10-mm thin geopolymer based on fly ash and ladle furnace slag. J. Mater. Res. Technol. 2021, 15, 163–176. [Google Scholar] [CrossRef]
- Bignozzi, M.C.; Manzi, S.; Lancellotti, I.; Kamseu, E.; Barbieri, L.; Leonelli, C. Mix-Design and Characterization of Alkali Ac-tivated Materials Based on Metakaolin and Ladle Slag. Appl. Clay Sci. 2013, 73, 78–85. [Google Scholar] [CrossRef]
- Wang, W.-C.; Wang, H.-Y.; Tsai, H.-C. Study on engineering properties of alkali-activated ladle furnace slag geopolymer. Constr. Build. Mater. 2016, 123, 800–805. [Google Scholar] [CrossRef]
- Pinheiro, C.; Rios, S.; da Fonseca, A.V.; Fernández-Jiménez, A.; Cristelo, N. Application of the response surface method to optimize alkali activated cements based on low-reactivity ladle furnace slag. Constr. Build. Mater. 2020, 264, 120271. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, P. Hydration properties of basic oxygen furnace steel slag. Constr. Build. Mater. 2010, 24, 1134–1140. [Google Scholar] [CrossRef]
- Mahieux, P.-Y.; Aubert, J.-E.; Escadeillas, G. Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders. Constr. Build. Mater. 2009, 23, 742–747. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, J.; Luo, X.; Zhu, J.; Nie, L. Experiment Research on Mix Design and Early Mechanical Performance of Alkali-Activated Slag Using Response Surface Methodology (RSM). Ceram. Int. 2016, 42, 11666–11673. [Google Scholar] [CrossRef]
- Barahimi, V.; Moghimi, H.; Taheri, R.A. Cu Doped TiO2-Bi2O3 Nanocomposite for Degradation of Azo Dye in Aqueous Solution: Process Modeling and Optimization Using Central Composite Design. J. Environ. Chem. Eng. 2019, 7, 103078. [Google Scholar] [CrossRef]
- Hlangwani, E.; Doorsamy, W.; Adebiyi, J.A.; Fajimi, L.I.; Adebo, O.A. A modeling method for the development of a bioprocess to optimally produce umqombothi (a South African traditional beer). Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Zhai, C.; Xu, J.; Nie, X.; Tian, J.; Yu, H. Multiple nonlinear regression model of cutting force for C/SiC composites by laser-assisted micromachining. Int. J. Appl. Ceram. Technol. 2021, 18, 2273–2283. [Google Scholar] [CrossRef]
- Auta, M.; Hameed, B. Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology. Chem. Eng. J. 2011, 175, 233–243. [Google Scholar] [CrossRef]
- Ritter, A.; Muñoz-Carpena, R. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. J. Hydrol. 2013, 480, 33–45. [Google Scholar] [CrossRef]
- Sojobi, A.; Aladegboye, O.; Awolusi, T. Green interlocking paving units. Constr. Build. Mater. 2018, 173, 600–614. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; Nicolas, R.S.; Brice, D.G.; Kilcullen, A.R.; Hamdan, S.; van Deventer, J.S. Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Constr. Build. Mater. 2013, 48, 1187–1201. [Google Scholar] [CrossRef]
- Fang, G.; Ho, W.K.; Tu, W.; Zhang, M. Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr. Build. Mater. 2018, 172, 476–487. [Google Scholar] [CrossRef]
- Nadoushan, M.J.; Ramezanianpour, A.A. The effect of type and concentration of activators on flowability and compressive strength of natural pozzolan and slag-based geopolymers. Constr. Build. Mater. 2016, 111, 337–347. [Google Scholar] [CrossRef]
- Polettini, A.; Pomi, R.; Stramazzo, A. CO2 sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects. J. Environ. Manag. 2016, 167, 185–195. [Google Scholar] [CrossRef]
- Lee, W.; van Deventer, J. The effects of inorganic salt contamination on the strength and durability of geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2002, 211, 115–126. [Google Scholar] [CrossRef]
- Shrivas, R.; Paramkusam, B.R.; Dwivedi, S.B. Effect of Alkali Concentration on Strength Development in Jointly Activated Pond Ash-GGBFS Mixtures through Geopolymeric Reactions. KSCE J. Civ. Eng. 2021, 25, 1600–1608. [Google Scholar] [CrossRef]
- Chi, M.; Huang, R. Binding Mechanism and Properties of Alkali-Activated Fly Ash/Slag Mortars. Constr. Build Mater. 2013, 40, 291–298. [Google Scholar] [CrossRef]
- Mishra, A.; Choudhary, D.; Jain, N.; Kumar, M.; Sharda, N.; Dutt, D. Effect of Concentration of Alkaline Liquid and Curing Time on Strength and Water Absorption of Geopolymer Concrete. ARPN J. Eng. Appl. Sci. 2008, 3, 14–18. [Google Scholar]
- Jeyasehar, C.A.; Saravanan, G.; Ramakrishnan, A.K.; Kandasamy, S. Strength and Durability Studies on Fly Ash Based Geopolymer Bricks. Asian J. Civ. Eng. 2013, 14, 797–808. [Google Scholar]
- Mora, Z.; Suharyanto, A.; Yahya, M. Effect of Work Safety and Work Healthy towards Employee’s Productivity in PT. Sisirau Aceh Tamiang. Burns 2020, 2, 1. [Google Scholar] [CrossRef]
- Nazari, E.; Rashchi, F.; Saba, M.; Mirazimi, S.M.J. Simultaneous Recovery of Vanadium and Nickel from Power Plant Fly-Ash: Optimization of Parameters Using Response Surface Methodology. Waste Manag. 2014, 34, 2687–2696. [Google Scholar] [CrossRef]
- Hafeez, A.; Taqvi, S.A.A.; Fazal, T.; Javed, F.; Khan, Z.; Amjad, U.S.; Bokhari, A.; Shehzad, N.; Rashid, N.; Rehman, S. Optimization on Cleaner Intensification of Ozone Production Using Artificial Neural Network and Response Surface Methodology: Parametric and Comparative Study. J. Clean. Prod. 2020, 252, 119833. [Google Scholar] [CrossRef]
- Rathankumar, A.K.; Vaithyanathan, V.K.; Saikia, K.; Anand, S.S.; Vaidyanathan, V.K.; Cabana, H. Effect of Alkaline Treatment on the Removal of Contaminants of Emerging Concern from Municipal Biosolids: Modelling and Optimization of Process Parameters Using RSM and ANN Coupled GA. Chemosphere 2022, 286, 131847. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-C.; Tan, K.H.; Zhang, D. Multi-response optimization of post-fire performance of strain hardening cementitious composite. Cem. Concr. Compos. 2017, 80, 80–90. [Google Scholar] [CrossRef]
- Burke, E.K.; Burke, E.K.; Kendall, G.; Kendall, G. Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 1461469406. [Google Scholar]
- Achara, B.E.; Mohammed, B.S.; Liew, M. Bond behaviour of nano-silica-modified self-compacting engineered cementitious composite using response surface methodology. Constr. Build. Mater. 2019, 224, 796–814. [Google Scholar] [CrossRef]
Precursor | Component (wt%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | K2O | Na2O | TiO2 | P2O5 | Cr2O3 | Mn2O3 | LOI * | |
BOFS | 8.8 | 4.27 | 23.28 | 41.07 | 5.25 | 1.74 | 0.01 | 0.1 | 0.2 | 0.65 | 0.15 | 2.53 | 13.12 |
GGBFS | 39 | 12.5 | 1 | 37.5 | 5 | 0.3 | 0.2 | 0.6 | - | - | - | - | 0.02 |
Levels | Factor 1 A: BOF Ratio (wt%) | Factor 2 B: NaOH Molarity (M) |
---|---|---|
−1 | 20 | 2 |
0 | 40 | 6 |
+1 | 60 | 10 |
Mixture ID | Coded | Actual | Mix Proportion | ||||
---|---|---|---|---|---|---|---|
A | B | A (wt%) | B (M) | BOFS (wt%) | GGBFS (wt%) | NaOH Molarity (M) | |
B0.2-2 | −1 | −1 | 20 | 2 | 20 | 80 | 2 |
B0.4-2 | 0 | −1 | 40 | 2 | 40 | 60 | 2 |
B0.6-2 | 1 | −1 | 60 | 2 | 60 | 40 | 2 |
B0.2-6 | −1 | 0 | 20 | 6 | 20 | 80 | 6 |
B0.4-6 * | 0 | 0 | 40 | 6 | 40 | 60 | 6 |
0 | 0 | 40 | 6 | 40 | 60 | 6 | |
0 | 0 | 40 | 6 | 40 | 60 | 6 | |
0 | 0 | 40 | 6 | 40 | 60 | 6 | |
0 | 0 | 40 | 6 | 40 | 60 | 6 | |
B0.6-6 | 1 | 0 | 60 | 6 | 60 | 40 | 6 |
B0.2-10 | −1 | 1 | 20 | 10 | 20 | 80 | 10 |
B0.4-10 | 0 | 1 | 40 | 10 | 40 | 60 | 10 |
B0.6-10 | 1 | 1 | 60 | 10 | 60 | 40 | 10 |
Response | Source | SS | DF | MS | F-Value | p-Value | |
---|---|---|---|---|---|---|---|
Flow | Model | 796.31 | 5 | 159.26 | 43.26 | <0.0001 * | SD = 1.92 R2 = 0.97 AP = 22.33 |
A: BOFS ratio | 12.56 | 1 | 12.56 | 3.41 | 0.1073 | ||
B: Molarity | 733.28 | 1 | 733.28 | 199.18 | <0.0001 * | ||
AB | 49.00 | 1 | 49.00 | 13.31 | 0.0082 * | ||
A² | 1.41 | 1 | 1.41 | 0.38 | 0.5562 | ||
B² | 0.04 | 1 | 0.04 | 0.01 | 0.9191 | ||
Residual | 25.77 | 7 | 3.68 | ||||
Lack of fit | 20.73 | 3 | 6.91 | 5.49 | 0.0668 | ||
Pure Error | 5.038 | 4 | 1.259 | ||||
Cor. Total | 822.08 | 12 | |||||
Compressive strength | Model | 424.03 | 5 | 84.81 | 25.76 | 0.0002 * | SD = 1.81 R2 = 0.95 AP = 15.82 |
A: BOFS ratio | 215.28 | 1 | 215.28 | 65.39 | 0.0001 * | ||
B: Molarity | 84.75 | 1 | 84.75 | 25.74 | 0.0014 * | ||
AB | 23.86 | 1 | 23.86 | 7.25 | 0.0310 * | ||
A² | 0.11 | 1 | 0.11 | 0.03 | 0.8584 | ||
B² | 83.16 | 1 | 83.16 | 25.26 | 0.0015 * | ||
Residual | 23.04 | 7 | 3.29 | ||||
Lack of fit | 18.85 | 3 | 6.28 | 6.00 | 0.0581 | ||
Pure Error | 4.190 | 4 | 1.047 | ||||
Cor. Total | 447.07 | 12 | |||||
Flexural strength | Model | 27.76 | 5 | 5.55 | 28.70 | 0.0002 * | SD = 0.44 R2 = 0.95 AP = 17.46 |
A: BOFS ratio | 1.70 | 1 | 1.70 | 8.77 | 0.0211 * | ||
B: Molarity | 25.88 | 1 | 25.88 | 133.74 | <0.0001 * | ||
AB | 0.00 | 1 | 0.00 | 0.00 | 0.9825 | ||
A² | 0.01 | 1 | 0.01 | 0.07 | 0.7957 | ||
B² | 0.12 | 1 | 0.12 | 0.61 | 0.4614 | ||
Residual | 1.35 | 7 | 0.19 | ||||
Lack of fit | 0.19 | 3 | 0.06 | 0.22 | 0.8757 | ||
Pure Error | 1.160 | 4 | 0.290 | ||||
Cor. Total | 29.12 | 12 | |||||
Water absorption | Model | 27.53 | 5 | 5.51 | 458.72 | <0.0001 * | SD = 0.11 R2 = 0.99 AP = 67.46 |
A: BOFS ratio | 1.00 | 1 | 1.00 | 83.34 | <0.0001 * | ||
B: Molarity | 25.83 | 1 | 25.83 | 2152.05 | <0.0001 * | ||
AB | 0.29 | 1 | 0.29 | 24.29 | 0.0017 * | ||
A² | 0.10 | 1 | 0.10 | 8.59 | 0.0220 * | ||
B² | 0.15 | 1 | 0.15 | 12.52 | 0.0095 * | ||
Residual | 0.08 | 7 | 0.01 | ||||
Lack of fit | 0.08 | 3 | 0.03 | 51.52 | 0.0012 * | ||
Pure Error | 0.002 | 4 | 0.001 | ||||
Cor. Total | 27.62 | 12 |
Response | SD | MSE | RMSE | NSE | Nt | Outcome |
---|---|---|---|---|---|---|
Flow | 8.28 | 1.98 | 1.41 | 0.97 | 4.88 | Very good |
Compressive strength | 6.10 | 1.77 | 1.33 | 0.95 | 3.58 | Very good |
Flexural strength | 1.56 | 0.10 | 0.32 | 0.96 | 3.83 | Very good |
Water absorption | 1.52 | 0.01 | 0.08 | 1.00 | 17.87 | Very good |
Dependent and Independent Factors | Optimization Goal | Desirability | Predicted Values | Experimental Values | SD | Error (%) | |
---|---|---|---|---|---|---|---|
Optimization-1 | A: BOFS ratio (%) | In range | 1.000 | 24.61 | |||
B: Molarity (M) | In range | 7.74 | |||||
Flow | In range | 70.97 | 72.00 | 1.41 | 1.43 | ||
Compressive strength | In range | 27.53 | 27.77 | 1.54 | 0.87 | ||
Flexural strength | In range | 5.48 | 5.37 | 0.05 | 2.05 | ||
Water absorption | In range | 3.18 | 3.10 | 3.18 | 2.58 | ||
Optimization-2 | A: BOFS ratio (%) | In range | 0.920 | 20.00 | |||
B: Molarity (M) | In range | 8.90 | |||||
Flow | In range | 72.91 | 73.00 | 1.29 | 0.57 | ||
Compressive strength | Maximize | 29.02 | 29.48 | 2.04 | 1.56 | ||
Flexural strength | Maximize | 6.31 | 6.33 | 0.50 | 0.31 | ||
Water absorption | Minimize | 2.74 | 2.58 | 0.10 | 6.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özkan, H.; Miyan, N.; Kabay, N.; Omur, T. Experimental and Statistical Study on the Properties of Basic Oxygen Furnace Slag and Ground Granulated Blast Furnace Slag Based Alkali-Activated Mortar. Materials 2023, 16, 2357. https://doi.org/10.3390/ma16062357
Özkan H, Miyan N, Kabay N, Omur T. Experimental and Statistical Study on the Properties of Basic Oxygen Furnace Slag and Ground Granulated Blast Furnace Slag Based Alkali-Activated Mortar. Materials. 2023; 16(6):2357. https://doi.org/10.3390/ma16062357
Chicago/Turabian StyleÖzkan, Hakan, Nausad Miyan, Nihat Kabay, and Tarik Omur. 2023. "Experimental and Statistical Study on the Properties of Basic Oxygen Furnace Slag and Ground Granulated Blast Furnace Slag Based Alkali-Activated Mortar" Materials 16, no. 6: 2357. https://doi.org/10.3390/ma16062357
APA StyleÖzkan, H., Miyan, N., Kabay, N., & Omur, T. (2023). Experimental and Statistical Study on the Properties of Basic Oxygen Furnace Slag and Ground Granulated Blast Furnace Slag Based Alkali-Activated Mortar. Materials, 16(6), 2357. https://doi.org/10.3390/ma16062357