Corrosion Inhibition Mechanism of Ultra-High-Temperature Acidizing Corrosion Inhibitor for 2205 Duplex Stainless Steel
Abstract
:1. Introduction
2. Research Methods
2.1. Test Materials
2.2. High-Temperature and High-Pressure Corrosion Test
2.2.1. Test Conditions
2.2.2. Microstructure Analysis
2.3. Molecular Dynamics Simulation
2.3.1. Construction of Water-Fe-Corrosion Inhibitor System Model
2.3.2. Establishment and Calculation of Diffusion Behavior Model of Corrosion Medium Particles H2O and H3O+ in Corrosion Inhibitor Film
3. Experimental Results and Analysis
3.1. Microstructure
3.2. Optimization Calculation and Design of Corrosion Inhibitor
3.3. Corrosion Inhibition Mechanism Analysis at High-Temperature and High-Pressure
3.3.1. Effect of Temperature on Performance of Corrosion Inhibitor
3.3.2. Effect of Time on Performance of Corrosion Inhibitor
3.3.3. Corrosion Inhibitor Layer Analysis
4. Discussion
5. Conclusions
- (1)
- The 2205 duplex stainless steel ultra-high-temperature acidizing corrosion inhibitor showed excellent corrosion effect in the 180 °C 9 wt. % HCl + 1.5 wt. % of HF + 3 wt. % CH3COOH acid system, the corrosion rate can be reduced to 12.1881 g·m−2·h−1 and is far below the commonly accepted 81 g·m−2·h−1, and no selective corrosion was observed.
- (2)
- The ultra-high temperature acidizing corrosion inhibitor has a double-layer membrane structure, and the inorganic membrane bonded with the substrate is mainly composed of Sb element, and the outer layer is an organic membrane mainly composed of C element.
- (3)
- The ultra-high temperature acidizing corrosion inhibitor had a good blocking effect on the diffusion of corrosive medium particles. With the increase in temperature, the binding energy of the corrosion inhibitor and substrate decreases, the blocking effect of corrosion inhibitor film on Cl− also decreases, and pitting corrosion could easily be detected.
- (4)
- With the increase in temperature and the extension of test time, the density of corrosion inhibitor film could be damaged, and the corrosion inhibition effect decreased, which was manifested as the increase in local corrosion depth and diameter.
- (5)
- The developed acidizing corrosion inhibitor has great engineering application value to broaden the selection of materials for ultra-high-temperature and high-pressure wells and reduce the cost of oil and gas field string.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ming, L.; Yongcun, F.; Yun, G.; Jingen, D.; Cheng, H. Development status and prospect of key technologies for high temperature and high pressure drilling. Pet. Sci. Bull. 2021, 6, 228–244. [Google Scholar]
- Jin-Cheng, R.; Jin, L.; Yu-Chun, S.; Liang-ying, C.; Ping, Z. Oil Testing Technology of L17 Ultra High Pressure Gas Well in Sichuan Basin. Nat. Gas Oil 2008, 28, 58–60. [Google Scholar]
- Shadravan, A.; Amani, M. HPHT 101—What every engineer or geoscientist should know about high pressure high temperature wells. In Proceedings of the SPE Kuwait International Petroleum Conference and Exhibition, Kuwait City, Kuwait, 10–12 December 2012; Volume 2, pp. 917–943. [Google Scholar] [CrossRef]
- Ueda, M.; Omura, T.; Nakamura, S.; Abe, T.; Nakamura, K.; Tomohiko, T.O.; Nice, P.I. Development of 125ksi Grade HSLA Steel OCTG for Mildly Sour Environments. Corrosion; NACE International: Houston, TX, USA, 2005. [Google Scholar]
- Liu, M. Finite element analysis of pitting corrosion on mechanical behavior of E690 steel panel. Anti-Corrosion Methods Mater. 2022, 69, 351–361. [Google Scholar] [CrossRef]
- Juanita, M.C. Design and Investigation of a North Sea Acid Corrosion Inhibition System. In Corrosion 2006; OnePetro: Richardson, TX, USA, 2006. [Google Scholar]
- Iqbala, M.; Lyonb, B.; Benavidesa, E.; Ehsan, M.; Yunping, F.; Charles, M.; Kevin, J.; Christopher, E.; Pennell, K.D.; Keith, J. High temperature stability and low adsorption of sub-100 nm magnetite nanoparticles grafted with sulfonated copolymers on Berea sandstone in high salinity brine. Physicochem. Eng. Asp. 2017, 520, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Pang, H.; Chen, J.; Pang, X.; Liu, L.; Liu, K.; Xiang, C. Key factors controlling hydrocarbon accumulations in Ordovician carbonate reservoirs in the Tazhong area, Tarim basin, western China. Mar. Pet. Geol. 2013, 43, 88–101. [Google Scholar] [CrossRef]
- Liu, M. Corrosion and Mechanical Behavior of Metal Materials. Materials 2023, 16, 973. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.; Bülent, K.; Nuri, O.; Kanca, E. The Investigation of Corrosion Behavior of Borided AISI 304 Austenitic Stainless Steel with Nanoboron Powder. Prot. Met. Phys. Chem. Surf. 2014, 50, 104–110. [Google Scholar]
- Lo, K.; Shek, C.; Lai, J. Recent developments in stainless steel. Mater. Sci. Eng. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Wang, Y.Q. Study on Corrosion Resistance of 2205 Duplex Stainless Steel in Underground Environment. Master’s Thesis, Xi’an Shiyou University, Xi’an, China, 2018. [Google Scholar]
- Liu, M. Effect of uniform corrosion on mechanical behavior of E690 high-strength steel lattice corrugated panel in marine environment: A finite element analysis. Mater. Res. Express 2021, 8, 066510. [Google Scholar] [CrossRef]
- Guo, L.Q.; Li, M.; Shi, X.L.; Yan, Y.; Li, X.; Qiao, L. Effect of annealing temperature on the corrosion behavior of duplex stainless steel studied by in situ techniques. Corros. Sci. 2011, 53, 3733–3741. [Google Scholar] [CrossRef]
- Ishiguro, Y.; Suzuki, T.; Miyata, Y.; Suzuki, T.; Kimura, M.; Sato, H.; Shimamoto, K. Enhanced corrosion-resistant stainless steel OCTG of 17Cr for sweet and sour environments. In Proceedings of the 68th NACE Annual Conference, Orlando, FL, USA, 17–21 March 2013. [Google Scholar]
- Tsai, W.-T.; Tsai, K.-M.; Lin, C.-j. Selective corrosion in duplex stainless steel. In Proceedings of the CORROSION 2003, San Diego, CA, USA, 16–20 March 2003. [Google Scholar]
- Lo, I.-H.; Fu, Y.; Lin, C.-J. Effect of electrolyte composition on the active-to-passive transition behavior of 2205 duplex stainless steel in H2SO4/HCl solutions. Corros. Sci. 2006, 48, 696–708. [Google Scholar] [CrossRef]
- Tsai, W.-T.; Chen, J.-R. Galvanic corrosion between the constituent phases in duplex stainless steel. Corros. Sci. 2007, 49, 3659–3668. [Google Scholar] [CrossRef]
- Lo, I.-H.; Tsai, W.-T. Effect of selective dissolution on fatigue crack initiation in 2205 duplex stainless steel. Corros. Sci. 2007, 49, 1847–1861. [Google Scholar] [CrossRef]
- Fu, Y.; Lin, C. A study of the selective dissolution behaviour of duplex stainless steel by micro-electrochemical technique. Acta Metall. Sin. 2005, 41, 302–306. [Google Scholar]
- Tsai, W.; Lo, I. Effects of potential and loading frequency on corrosion fatigue behaviour of 2205 duplex stainless steel. Corrosion 2008, 64, 155–163. [Google Scholar] [CrossRef]
- Symniotis, E. Galvanic effects on active dissolution of duplex stainless steels. Corrosion 1990, 46, 2–12. [Google Scholar] [CrossRef]
- Yau, Y.-H.; Streicher, M.A. Galvanic Corrosion of Duplex FeCr-10%Ni Alloys in Reducing Acids. Corrosion 1987, 43, 366–373. [Google Scholar] [CrossRef]
- Symniotis, E. Dissolution mechanism of duplex stainless steels in the active-to-passive transition range and role of microstructure. Corrosion 1995, 51, 571–580. [Google Scholar] [CrossRef]
- Sridhar, N.; Kolts, J. Effects of nitrogen on the selective dissolution of a duplex stainless steel. Corrosion 1987, 143, 646. [Google Scholar] [CrossRef]
- Lee, J.; Fushimi, K.; Nakanishi, T.; Hasegawa, Y.; Park, Y. Corrosion behaviour of ferrite and austenite phases on super duplex stainless steel in a modified green-death solution. Corros. Sci. 2014, 89, 111–117. [Google Scholar] [CrossRef]
- Ho, M.Y.; Geddes, J.; Barmatov, E.; Crawford, L.; Hughes, T. Effect of composition and microstructure of duplex stainless steel on adsorption behaviour and efficiency of corrosion inhibitors in 4 molar hydrochloric acid. Part I: Standard DSS 2205. Corros. Sci. 2018, 137, 43–52. [Google Scholar] [CrossRef]
- Mizukami, H.; Yasui, A.; Hirano, S.; Ooba, T.; Yasui, A.; Sunaba, T.; Uno, M. Effect of Additives to Corrosion inhibitor for Duplex Stainless Steel in Acidizing. In Proceedings of the CORROSION Virtual Conference & Expo, Virtual, 19–30 April 2021. [Google Scholar]
- De Mello Joia, C.J.B.; Brito, R.F.; Barbosa, B.C.; Pereira, A.Z.I. Performance of Corrosion Inhibitors for Acidizing Jobs in Horizontal Wells Completed with CRA Laboratory Tests. In Proceedings of the 56st NACE Annual Conference, Houston, TX, USA, 11–17 March 2021. [Google Scholar]
- Ornek, C.; Engelberg, D.L. SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel. Corros. Sci. 2015, 99, 164–171. [Google Scholar] [CrossRef]
- Du, J.; Yu, M.; Liu, P.; Fu, Y.; Xiong, G.; Liu, J.; Chen, X. Corrosion behavior of 2205 duplex stainless steel in acidizing stimulation solution for oil and gas wells at 200 °C. Anti-Corros. Methods Mater. 2022, 69, 149–159. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, X. Investigation of moisture diffusion in epoxy system: Experiments and molecular dynamics simulations. Chem. Phys. Lett. 2005, 412, 322–326. [Google Scholar] [CrossRef]
- Yazdani, S.; Prince, L.; Vitry, V. Optimization of electroless Ni–B-nanodiamond coating corrosion resistance and understanding the nanodiamonds role on pitting corrosion behavior using shot noise theory and molecular dynamic simulation. Diam. Relat. Mater. 2023, 134, 109793. [Google Scholar] [CrossRef]
- Hao, C.; Zhibin, F.; Zhijian, C.; Xuejie, Z.; Penghua, Z.; Jun, W. Effect of Cl− and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction. J. Chin. Soc. Corros. Prot. 2022, 42, 493–500. [Google Scholar]
- Liu, L.F.; Liu, J.X.; Zhang, J.; Lin-fa, L.; Li-Jun, X.; Gui-Min, J. Molecular dynamics simulation of the corrosive medium diffusion behavior inhibited by the corrosion inhibitor membranes. Chem. J. Chin. Univ. 2010, 31, 537. [Google Scholar] [CrossRef]
- Wang, Z.W.; Li, B.; Lin, Q.B.; Hu, C.Y. Molecular dynamics simulation on diffusion of five kinds of chemical additives in polypropylene. Packag. Technol. Sci. 2018, 31, 277. [Google Scholar] [CrossRef]
- Razaghi, Z.; Rezaei, M. Corrosion mechanism of sulfate, chloride, and tetrafluoroborate ions interacted with Ni-19wt% Cr coating: A combined experimental study and molecular dynamics simulation. J. Mol. Liq. 2020, 319, 114243. [Google Scholar] [CrossRef]
- Damej, M.; Kaya, S.; EL Ibrahimi, B.; Lee, H.-S.; Molhi, A.; Serdaroğlu, G.; Benmessaoud, M.; Ali, I.; EL Hajjaji, S.; Lgaz, H. The corrosion inhibition and adsorption behavior of mercaptobenzimidazole and bis-mercaptobenzimidazole on carbon steel in 1.0 M HCl: Experimental and computational insights. Surf. Interfaces 2021, 24, 101095. [Google Scholar] [CrossRef]
- Qiao, G.M.; Ren, Z.J.; Zhang, J.; Hu, S.; Yan, Y.; Ti, Y. Molecular Dynamics Simulation of Corrosive Medium Diffusion in Corrosion Inhibitor Membrane. Acta Phys. Chim. Sin. 2010, 26, 3041–3046. [Google Scholar]
- Liu, L.-f. Theoretical Study on the Mechanism of the Inhibition Efficiency of 1-(2-hydroxyethyl)-2-alkyl Imidazoline Inhibitor; China University of Petroleum (East China): Shandong, China, 2010. [Google Scholar]
- Finšgar, M.; Jackson, J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review. Corros. Sci. 2014, 86, 17–41. [Google Scholar] [CrossRef] [Green Version]
- Merello, R.; Botana, F.; Botella, J.; Matres, M.; Marcos, M. Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn–N duplex stainless steels. Corros. Sci. 2003, 45, 909–921. [Google Scholar] [CrossRef]
- Bautista, A.; Alvarez, S.M.; Velasco, F. Corrosion of duplex stainless steel bars in acid Part 1: Effect of the composition, microstructure and anodic polarizations. Mater. Corros. 2015, 66, 348. [Google Scholar] [CrossRef]
- Zhao, Y.; Qi, W.; Xie, J.; Chen, Y.; Zhang, T.; Xu, D.; Wang, F. Investigation of the failure mechanism of the TG-201 inhibitor:Promoting the synergistic effect of HP-13Cr stainless steel during the well completion. Corros. Sci. 2020, 166, 108448. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Cai, Q.R.; He, X.M.; Gao, L.; Kim, G. Corrosion inhibition and adsorption behavior of methionine on copper in HCl and synergistic effect of zine ions. Mater. Chem. Phys. 2009, 114, 612–617. [Google Scholar] [CrossRef]
Medium | Temperature (°C) | Time (h) | Concentration (wt.%) |
---|---|---|---|
9 wt.%HCl + 1.5 wt.% HF + 3 wt.% CH3COOH | 140 | 4 | 4 |
160 | 4 | 5 | |
180 | 4 | 6 | |
180 | 12 | 6 |
Temperatures (°C) | 140 | 160 | 180 |
Binding energy (kcal/mol) | 188.39 | 183.26 | 180.75 |
System | Corrosion Inhibitor -H2O | Corrosion Inhibitor -H3O+ |
---|---|---|
Diffusion coefficient (10−9 m2/s) | 0.0108 | 0.0099 |
System | H2O [40] | Corrosion Inhibitor | ||
---|---|---|---|---|
Temperature | 140 | 160 | 180 | |
Diffusion coefficient (10−9 m2/s) | 0.3220 | 0.0177 | 0.0189 | 0.0226 |
System | Corrosion Inhibitor Film -H2O | Corrosion Inhibitor Film -H3O+ |
---|---|---|
E(kcal/mol) | −99.25 | −155.91 |
Temperature (°C) | Test Location | C | O | F | S | Cl | Cr | Fe | Ni | Mo | Sb |
---|---|---|---|---|---|---|---|---|---|---|---|
140 | Outer film | 40.38 | 7.39 | - | 1.27 | 5.42 | 0.37 | 2.22 | 0.52 | - | 42.43 |
Inner film | 4.63 | 2.94 | 0.48 | 0.89 | 1.35 | 5.3 | - | - | 78.99 | ||
160 | Outer film | 53.95 | 7.47 | 1.84 | 0.98 | 7.77 | - | 1.23 | - | - | 26.33 |
Inner film | 3.12 | - | - | - | - | 1.26 | 5.30 | - | - | 89.64 | |
180 | Outer film | 64.55 | 7.62 | - | 1.04 | 7.81 | 0.52 | 1.82 | 2.36 | - | 14.28 |
Inner film | 6.84 | 7.64 | - | 0.28 | 1.84 | 5.54 | 15.22 | 18.32 | 1.78 | 42.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Song, W.; Zhang, J.; Yin, C.; Zhao, M.; Chao, H.; Zhang, J.; Lei, Z.; Fan, L.; Liu, W.; et al. Corrosion Inhibition Mechanism of Ultra-High-Temperature Acidizing Corrosion Inhibitor for 2205 Duplex Stainless Steel. Materials 2023, 16, 2358. https://doi.org/10.3390/ma16062358
Li D, Song W, Zhang J, Yin C, Zhao M, Chao H, Zhang J, Lei Z, Fan L, Liu W, et al. Corrosion Inhibition Mechanism of Ultra-High-Temperature Acidizing Corrosion Inhibitor for 2205 Duplex Stainless Steel. Materials. 2023; 16(6):2358. https://doi.org/10.3390/ma16062358
Chicago/Turabian StyleLi, Danping, Wenwen Song, Junping Zhang, Chengxian Yin, Mifeng Zhao, Hongzhou Chao, Juantao Zhang, Zigang Lei, Lei Fan, Wan Liu, and et al. 2023. "Corrosion Inhibition Mechanism of Ultra-High-Temperature Acidizing Corrosion Inhibitor for 2205 Duplex Stainless Steel" Materials 16, no. 6: 2358. https://doi.org/10.3390/ma16062358
APA StyleLi, D., Song, W., Zhang, J., Yin, C., Zhao, M., Chao, H., Zhang, J., Lei, Z., Fan, L., Liu, W., & Li, X. (2023). Corrosion Inhibition Mechanism of Ultra-High-Temperature Acidizing Corrosion Inhibitor for 2205 Duplex Stainless Steel. Materials, 16(6), 2358. https://doi.org/10.3390/ma16062358