Effective Boundary Conditions and Stochastic Crack Distribution for Modelling Guided Waves Scattering by a Partially Closed Interfacial Delamination in a Laminate
Abstract
:1. Introduction
2. Mathematical Models of Interface Delamination
2.1. Models of Partially Closed Delaminations
2.2. Distribution of Open Cracks
2.3. Effective Spring Boundary Conditions
2.3.1. Uniform Partially Closed Delamination
2.3.2. Bridged Crack
2.4. Algorithm of Open Micro-Crack Distribution Generation
2.4.1. Partially Closed Delamination with Constant Crack Density (Uniform)
2.4.2. Bridged Delamination
3. Mathematical Model of a Laminate with an Interface Delamination
4. Numerical Analysis
4.1. Uniformly Partially Closed Delamination
4.2. Bridged Crack
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vasiliev, V.V.; Morozov, E.V. Advanced Mechanics of Composite Materials and Structures, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2018; p. 882. [Google Scholar]
- Gao, K.; Zhang, X.; Liu, B.; He, J.; Feng, J.; Ji, P.; Fang, W.; Yin, F. The Deformation Characteristics, Fracture Behavior and Strengthening-Toughening Mechanisms of Laminated Metal Composites: A Review. Metals 2020, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Sun, X.; Eaton, M.; Marks, R.; Clarke, A.; Featherston, C.; Kawashita, L.; Hallett, S. An integrated numerical model for investigating guided waves in impact-damaged composite laminates. Compos. Struct. 2017, 176, 945–960. [Google Scholar] [CrossRef] [Green Version]
- Kudela, P.; Radzienski, M.; Ostachowicz, W. Impact induced damage assessment by means of Lamb wave image processing. Mech. Syst. Signal Process. 2018, 102, 23–36. [Google Scholar] [CrossRef]
- Li, W.; Xu, Y.; Hu, N.; Deng, M. Impact damage detection in composites using a guided wave mixing technique. Meas. Sci. Technol. 2020, 31, 014001. [Google Scholar] [CrossRef]
- Krueger, R. Development of a Benchmark Example for Delamination Fatigue Growth Prediction; Technical Report CR-2010-216723; NASA: Washington, DC, USA, 2010. [Google Scholar]
- Bogenfeld, R.; Schmiedel, P.; Kuruvadi, N.; Wille, T.; Kreikemeier, J. An experimental study of the damage growth in composite laminates under tension–fatigue after impact. Compos. Sci. Technol. 2020, 191, 108082. [Google Scholar] [CrossRef]
- Carpinteri, A. Debonding and Decohesion at the Interface Between Dissimilar Media. In Fracture and Complexity: One Century since Griffith’s Milestone; Springer: Dordrecht, The Netherlands, 2021; pp. 537–582. [Google Scholar] [CrossRef]
- Wang, W.; De Freitas, S.T.; Poulis, J.A.; Zarouchas, D. A review of experimental and theoretical fracture characterization of bi-material bonded joints. Compos. Part Eng. 2021, 206, 108537. [Google Scholar] [CrossRef]
- Attar, L.; Leduc, D.; Ech Cherif El Kettani, M.; Predoi, M.; Galy, J.; Pareige, P. Detection of the degraded interface in dissymmetrical glued structures using Lamb waves. NDT E Int. 2020, 111, 102213. [Google Scholar] [CrossRef]
- Karabutov, A.; Podymova, N. Quantitative analysis of the influence of voids and delaminations on acoustic attenuation in CFRP composites by the laser-ultrasonic spectroscopy method. Compos. Part Eng. 2014, 56, 238–244. [Google Scholar] [CrossRef]
- Zhang, H.; Hua, J.; Gao, F.; Lin, J. Efficient Lamb-wave based damage imaging using multiple sparse Bayesian learning in composite laminates. NDT E Int. 2020, 116, 102277. [Google Scholar] [CrossRef]
- Golub, M.V.; Doroshenko, O.V.; Wilde, M.V.; Eremin, A.A. Experimental validation of the applicability of effective spring boundary conditions for modelling damaged interfaces in laminate structures. Compos. Struct. 2021, 273, 114141. [Google Scholar] [CrossRef]
- Cawley, P. Structural health monitoring: Closing the gap between research and industrial deployment. Struct. Health Monit. 2018, 17, 1225–1244. [Google Scholar] [CrossRef] [Green Version]
- Aabid, A.; Parveez, B.; Raheman, M.A.; Ibrahim, Y.E.; Anjum, A.; Hrairi, M.; Parveen, N.; Mohammed Zayan, J. A Review of Piezoelectric Material-Based Structural Control and Health Monitoring Techniques for Engineering Structures: Challenges and Opportunities. Actuators 2021, 10, 101. [Google Scholar] [CrossRef]
- Olisa, S.C.; Khan, M.A.; Starr, A. Review of Current Guided Wave Ultrasonic Testing (GWUT) Limitations and Future Directions. Sensors 2021, 21, 811. [Google Scholar] [CrossRef]
- Diogo, A.R.; Moreira, B.; Gouveia, C.A.J.; Tavares, J.M.R.S. A Review of Signal Processing Techniques for Ultrasonic Guided Wave Testing. Metals 2022, 12, 936. [Google Scholar] [CrossRef]
- Sattarifar, A.; Nestorovic, T. Emergence of Machine Learning Techniques in Ultrasonic Guided Wave-based Structural Health Monitoring: A Narrative Review. Int. J. Progn. Health Manag. 2022, 13, 1. [Google Scholar] [CrossRef]
- Chung, E.T.; Efendiev, Y.; Gibson, R.L.; Vasilyeva, M. A generalized multiscale finite element method for elastic wave propagation in fractured media. GEM—Int. J. Geomath. 2016, 7, 163–182. [Google Scholar] [CrossRef]
- Wünsche, M.; Sladek, J.; Sladek, V.; Zhang, C.; Repka, M. Dynamic Wave Propagation in Fiber Reinforced Piezoelectric Composites with Cracks. Int. J. Comput. Methods 2019, 16, 1840021. [Google Scholar] [CrossRef]
- Khokhlov, N.; Favorskaya, A.; Stetsyuk, V.; Mitskovets, I. Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones. J. Comput. Phys. 2021, 446, 110637. [Google Scholar] [CrossRef]
- Muratov, M.V.; Stognii, P.V.; Petrov, I.B.; Anisimov, A.A.; Karaev, N.A. The study of dynamical processes in problems of mesofracture layers exploration seismology by methods of mathematical and physical simulation. Radioelektron. Nanosistemy Inf. Tehnol. 2021, 13, 71–78. [Google Scholar] [CrossRef]
- Gu, Y.; Golub, M.V.; Fan, C.M. Analysis of in-plane crack problems using the localized method of fundamental solutions. Eng. Fract. Mech. 2021, 256, 107994. [Google Scholar] [CrossRef]
- Gu, Y.; Lin, J.; Wang, F. Fracture mechanics analysis of bimaterial interface cracks using an enriched method of fundamental solutions: Theory and MATLAB code. Theor. Appl. Fract. Mech. 2021, 116, 103078. [Google Scholar] [CrossRef]
- Jiang, X.; Zhong, H.; Li, D.; Saputra, A.A.; Song, C. Three-dimensional dynamic fracture analysis using scaled boundary finite element method: A time-domain method. Eng. Anal. Bound. Elem. 2022, 139, 32–45. [Google Scholar] [CrossRef]
- Brito-Santana, H.; Thiesen, J.L.M.; de Medeiros, R.; Ferreira, A.J.M.; Rodríguez-Ramos, R.; Tita, V. Multiscale analysis for predicting the constitutive tensor effective coefficients of layered composites with micro and macro failures. Appl. Math. Model. 2019, 75, 250–266. [Google Scholar] [CrossRef]
- Guinovart-Sanjuan, D.; Rodríguez-Ramos, R.; Vajravelu, K.; Mohapatra, R.; Guinovart-Díaz, R.; Brito-Santana, H.; Tita, V.; Sabina, F. Prediction of effective properties for multilayered laminated composite with delamination: A multiscale methodology proposal. Compos. Struct. 2022, 297, 115910. [Google Scholar] [CrossRef]
- Thierry, V.; Cantero-Chinchilla, S.; Wu, W.; Lhemery, A.; Chronopoulos, D. A homogenisation scheme for ultrasonic Lamb wave dispersion in textile composites through multiscale wave and finite element modelling. Struct. Control. Health Monit. 2021, 28, e2728. [Google Scholar] [CrossRef]
- Liu, L.; Sridhar, A.; Geers, M.; Kouznetsova, V. Computational homogenization of locally resonant acoustic metamaterial panels towards enriched continuum beam/shell structures. Comput. Methods Appl. Mech. Eng. 2021, 387, 114161. [Google Scholar] [CrossRef]
- Naik, R.N.; Velmurugan, R. Homogenization Studies of Carbon/Epoxy Composites. Mech. Solids 2022, 57, 893–903. [Google Scholar] [CrossRef]
- Khachkova, T.; Lisitsa, V.; Kolyukhin, D.; Reshetova, G. Influence of interfaces roughness on elastic properties of layered media. Probabilistic Eng. Mech. 2021, 66, 103170. [Google Scholar] [CrossRef]
- Shi, F. Variance of elastic wave scattering from randomly rough surfaces. J. Mech. Phys. Solids 2021, 155, 104550. [Google Scholar] [CrossRef]
- Baik, J.M.; Thompson, R.B. Ultrasonic scattering from imperfect interfaces: A quasi-static model. J. Nondestruct. Eval. 1984, 4, 177–196. [Google Scholar] [CrossRef]
- Sotiropoulos, D.A.; Achenbach, J.D. Ultrasonic reflection by a planar distribution of cracks. J. Nondestruct. Eval. 1988, 7, 123–129. [Google Scholar] [CrossRef]
- Boström, A.; Wickham, G.R. On the boundary conditions for ultrasonic transmission by partially closed cracks. J. Nondestruct. Eval. 1991, 10, 139–149. [Google Scholar] [CrossRef]
- Pecorari, C.; Kelly, P. The quasistatic approximation for a cracked interface between a layer and a substrate. J. Acoust. Soc. Am. 2000, 107, 2454–2461. [Google Scholar] [CrossRef] [Green Version]
- Golub, M.V.; Boström, A. Interface damage modelled by spring boundary conditions for in-plane elastic waves. Wave Motion 2011, 48, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Lekesiz, H.; Katsube, N.; Rokhlin, S.I.; Seghi, R.R. Effective spring stiffness for a planar periodic array of collinear cracks at an interface between two dissimilar isotropic materials. Mech. Mater. 2011, 43, 87–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lekesiz, H.; Katsube, N.; Rokhlin, S.I.; Seghi, R.R. Effective spring stiffness for a periodic array of interacting coplanar penny-shaped cracks at an interface between two dissimilar isotropic materials. Int. J. Solids Struct. 2013, 50, 2817–2828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golub, M.V.; Doroshenko, O.V. Effective spring boundary conditions for modelling wave transmission through a composite with a random distribution of interface circular cracks. Int. J. Solids Struct. 2019, 165, 115–126. [Google Scholar] [CrossRef]
- Gauthier, C.; El-Kettania, M.E.C.; Galy, J.; Predoi, M.; Leduc, D. Structural adhesive bonding characterization using guided Lamb waves and the vertical modes. Int. J. Adhes. Adhes. 2020, 98, 1–6. [Google Scholar] [CrossRef]
- Matsushita, M.; Mori, N.; Biwa, S. Transmission of Lamb waves across a partially closed crack: Numerical analysis and experiment. Ultrasonics 2019, 92, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Lomonosov, A.; Hess, P. Finite-difference simulation of the interaction of surface acoustic waves with partially closed surface-breaking cracks. Int. J. Thermophys. 2013, 34, 1376–1384. [Google Scholar] [CrossRef]
- Watanabe, K.; Ueda, S.; Biwa, S.; Pecorari, C.; Heuer, R. Closed interface crack with singular spring stiffness model. Int. J. Eng. Sci. 2007, 45, 210–226. [Google Scholar] [CrossRef]
- Penado, F.E. Analysis of the partially closed interface crack in orthotropic materials. J. Thermoplast. Compos. Mater. 2018, 31, 820–836. [Google Scholar] [CrossRef]
- Cox, B.; Marshall, D. Concepts for bridged cracks in fracture and fatigue. Acta Metall. Mater. 1994, 42, 341–363. [Google Scholar] [CrossRef]
- Goldstein, R.; Perelmuter, M. Modeling of bonding at an interface crack. Int. J. Fract. 1999, 99, 53–79. [Google Scholar] [CrossRef]
- Yang, Q.; Cox, B. Cohesive models for damage evolution in laminated composites. Int. J. Fract. 2005, 133, 107–137. [Google Scholar] [CrossRef]
- Xu, Q.; Tao, W.; Qu, S.; Yang, Q. A cohesive zone model for the elevated temperature interfacial debonding and frictional sliding behavior. Compos. Sci. Technol. 2015, 110, 45–52. [Google Scholar] [CrossRef]
- Comninou, M. An overview of interface cracks. Eng. Fract. Mech. 1990, 37, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Golub, M.V.; Doroshenko, O.V.; Boström, A.E. Transmission of elastic waves through an interface between dissimilar media with random and periodic distributions of strip-like micro-cracks. Mater. Phys. Mech. 2018, 37, 52–59. [Google Scholar] [CrossRef]
- Carpinteri, A.; Paggi, M.; Zavarise, G. The effect of contact on the decohesion of laminated beams with multiple microcracks. Int. J. Solids Struct. 2008, 45, 129–143. [Google Scholar] [CrossRef]
- Glushkov, E.V.; Glushkova, N.V.; Ekhlakov, A.V. A mathematical model of the ultrasonic detection of three-dimensional cracks. J. Appl. Math. Mech. 2002, 66, 141–149. [Google Scholar] [CrossRef]
- Vatul’yan, A.O.; Yavruyan, O.V. Vibrations of a Layer with Delamination in the Framework of the Gradient Elasticity Theory. Russ. J. Nondestruct. Test. 2021, 57, 825–837. [Google Scholar] [CrossRef]
- Golub, M.V.; Shpak, A.; Fomenko, S.I.; Doroshenko, O.V.; Wang, Y.; Zhang, C. Semi-analytical hybrid approach for modelling guided wave-based SHM system for a laminate with multiple delaminations and surface-mounted inhomogeneities. Appl. Math. Model. 2022, 65, 234–255. [Google Scholar] [CrossRef]
- Glushkov, E.; Glushkova, N.; Ekhlakov, A.; Shapar, E. An analytically based computer model for surface measurements in ultrasonic crack detection. Wave Motion 2006, 43, 458–473. [Google Scholar] [CrossRef]
- Perelmuter, M. Analysis of interaction of bridged cracks and weak interfaces. Int. J. Mech. Sci. 2018, 149, 349–360. [Google Scholar] [CrossRef]
- Vellender, A.; Mishuris, G.; Piccolroaz, A. Perturbation analysis for an imperfect interface crack problem using weight function techniques. Int. J. Solids Struct. 2013, 50, 4098–4107. [Google Scholar] [CrossRef]
- Zhu, F.; Pan, E.; Qian, Z.; Luo, Z. Waves in a generally anisotropic viscoelastic composite laminated bilayer: Impact of the imperfect interface from perfect to complete delamination. Int. J. Solids Struct. 2020, 202, 262–277. [Google Scholar] [CrossRef]
- Cox, B.; Sridhar, N.; Beyerlein, I. Inertial effects in the pullout mechanism during dynamic loading of a bridged crack. Acta Mater. 2001, 49, 3863–3877. [Google Scholar] [CrossRef]
- Goldstein, R.; Perelmuter, M. An interface crack with non-linear bonds in a bridged zone. J. Appl. Math. Mech. 2011, 75, 106–118. [Google Scholar] [CrossRef]
- Perelmuter, M. Energy characteristics of interfacial bridged cracks. Procedia Struct. Integr. 2020, 28, 2320–2327. [Google Scholar] [CrossRef]
- Tiersten, H.F. Electromechanical coupling factors and fundamental material constants of thickness vibrating piezoelectric plates. Ultrasonics 1970, 8, 19–23. [Google Scholar] [CrossRef]
- Eriksson, A.S. Natural Frequencies of a Penny-Shaped Crack With Spring Boundary Condition. J. Appl. Mech. 1995, 62, 59–63. [Google Scholar] [CrossRef]
- Rautela, M.; Senthilnath, J.; Moll, J.; Gopalakrishnan, S. Combined two-level damage identification strategy using ultrasonic guided waves and physical knowledge assisted machine learning. Ultrasonics 2021, 115, 106451. [Google Scholar] [CrossRef] [PubMed]
- Lekesiz, H.; Katsube, N.; Rokhlin, S.I.; Seghi, R.R. Effective spring stiffness for non-interacting penny-shaped cracks at an interface between two dissimilar, isotropic, linearly elastic materials. Math. Mech. Solids 2011, 16, 778–790. [Google Scholar] [CrossRef]
- Golub, M.V.; Doroshenko, O.V.; Boström, A. Effective spring boundary conditions for a damaged interface between dissimilar media in three-dimensional case. Int. J. Solids Struct. 2016, 81, 141–150. [Google Scholar] [CrossRef]
- Zhang, N.; Zeng, L.; Lin, J.; Shao, Y. A Lamb wave-based crack evaluation method in plate-like structures using specular reflections and tip diffractions. Smart Mater. Struct. 2021, 30, 025015. [Google Scholar] [CrossRef]
- Golub, M.V.; Moroz, I.A.; Wang, Y.; Khanazaryan, A.D.; Kanishchev, K.K.; Okoneshnikova, E.A.; Shpak, A.N.; Mareev, S.A.; Zhang, C. Design and Manufacturing of the Multi-Layered Metamaterial Plate with Interfacial Crack-like Voids and Experimental-Theoretical Study of the Guided Wave Propagation. Acoustics 2023, 5, 122–135. [Google Scholar] [CrossRef]
Material | Poisson’s Ratio, | Young’s Modulus, E (GPa) | Density (kg/m3) |
---|---|---|---|
Aluminium | 0.33 | 70 | 2700 |
Steel | 0.17 | 74 | 7900 |
Material | Elastic Constants (GPa) | Piezoelectric Constants (C/m2) | Dielectric Constants (F/m) | Density (kg/m3) |
---|---|---|---|---|
Piezoeletric | 7800 | |||
material | ||||
PWTs | ||||
(PIC 155) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golub, M.V.; Doroshenko, O.V.; Gu, Y. Effective Boundary Conditions and Stochastic Crack Distribution for Modelling Guided Waves Scattering by a Partially Closed Interfacial Delamination in a Laminate. Materials 2023, 16, 2415. https://doi.org/10.3390/ma16062415
Golub MV, Doroshenko OV, Gu Y. Effective Boundary Conditions and Stochastic Crack Distribution for Modelling Guided Waves Scattering by a Partially Closed Interfacial Delamination in a Laminate. Materials. 2023; 16(6):2415. https://doi.org/10.3390/ma16062415
Chicago/Turabian StyleGolub, Mikhail V., Olga V. Doroshenko, and Yan Gu. 2023. "Effective Boundary Conditions and Stochastic Crack Distribution for Modelling Guided Waves Scattering by a Partially Closed Interfacial Delamination in a Laminate" Materials 16, no. 6: 2415. https://doi.org/10.3390/ma16062415
APA StyleGolub, M. V., Doroshenko, O. V., & Gu, Y. (2023). Effective Boundary Conditions and Stochastic Crack Distribution for Modelling Guided Waves Scattering by a Partially Closed Interfacial Delamination in a Laminate. Materials, 16(6), 2415. https://doi.org/10.3390/ma16062415