Material Extrusion 3D Printing (ME3DP) Process Simulations of Polymeric Porous Scaffolds for Bone Tissue Engineering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Porous Scaffolds
2.2. Methodology
2.3. ME3DP Process Simulation
3. Results and Discussions
3.1. Displacement Fields
3.2. Residual Stress Fields
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.D.; Amirthalingam, S.; Kim, S.L.; Lee, S.S.; Rangasamy, J.; Hwang, N.S. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Adv. Healthc. Mater. 2017, 6, 1700612. [Google Scholar] [CrossRef]
- Yilmaz, B.; Al Rashid, A.; Ait, Y.; Evis, Z.; Koç, M. Bioprinting: A Review of Processes, Materials and Applications. Bioprinting 2021, 23, e00148. [Google Scholar] [CrossRef]
- Sezer, N.; Evis, Z.; Koç, M. Additive Manufacturing of Biodegradable Magnesium Implants and Scaffolds: Review of the Recent Advances and Research Trends. J. Magnes. Alloy. 2021, 9, 392–415. [Google Scholar] [CrossRef]
- Miao, S.; Zhu, W.; Castro, N.J.; Leng, J.; Zhang, L.G. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications. Tissue Eng. Part C Methods 2016, 22, 952–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.K.; He, B.; Zhou, A.; Li, Y.; Chen, X.; Yang, Q.; Chen, B.; Qiao, B.; Jiang, D. D-RADA16-RGD-Reinforced Nano-Hydroxyapatite/Polyamide 66 Ternary Biomaterial for Bone Formation. Tissue Eng. Regen. Med. 2019, 16, 177–189. [Google Scholar] [CrossRef]
- Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y.M. Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review. Biomaterials 2016, 83, 127–141. [Google Scholar] [CrossRef]
- Montoya, C.; Du, Y.; Gianforcaro, A.L.; Orrego, S.; Yang, M.; Lelkes, P.I. On the Road to Smart Biomaterials for Bone Research: Definitions, Concepts, Advances, and Outlook. Bone Res. 2021, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- El-Rashidy, A.A.; Roether, J.A.; Harhaus, L.; Kneser, U.; Boccaccini, A.R. Regenerating Bone with Bioactive Glass Scaffolds: A Review of in Vivo Studies in Bone Defect Models. Acta Biomater. 2017, 62, 1–28. [Google Scholar] [CrossRef]
- Al Rashid, A.; Khan, S.A.; Al-ghamdi, S.G.; Koc, M. Additive Manufacturing of Polymer Nanocomposites: Needs and Challenges in Materials, Processes, and Applications. J. Mater. Res. Technol. 2021, 14, 910–941. [Google Scholar] [CrossRef]
- Badhe, R.V.; Akinfosile, O.; Bijukumar, D.; Barba, M.; Mathew, M.T. Systemic Toxicity Eliciting Metal Ion Levels from Metallic Implants and Orthopedic Devices—A Mini Review. Toxicol. Lett. 2021, 350, 213–224. [Google Scholar] [CrossRef]
- Sezer, N.; Evis, Z.; Kayhan, S.M.; Tahmasebifar, A.; Koç, M. Review of Magnesium-Based Biomaterials and Their Applications. J. Magnes. Alloy. 2018, 6, 23–43. [Google Scholar] [CrossRef]
- Alonzo, M.; Alvarez Primo, F.; Anil Kumar, S.; Mudloff, J.A.; Dominguez, E.; Fregoso, G.; Ortiz, N.; Weiss, W.M.; Joddar, B. Bone Tissue Engineering Techniques, Advances, and Scaffolds for Treatment of Bone Defects. Curr. Opin. Biomed. Eng. 2021, 17, 100248. [Google Scholar] [CrossRef] [PubMed]
- Oladapo, B.I.; Zahedi, S.A.; Omigbodun, F.T. A Systematic Review of Polymer Composite in Biomedical Engineering. Eur. Polym. J. 2021, 154, 110534. [Google Scholar] [CrossRef]
- Al Rashid, A.; Ahmed, W.; Khalid, M.Y.; Koc, M. Vat Photopolymerization of Polymer and Polymer Composites: Processes and Applications. Addit. Manuf. 2021, 47, 102279. [Google Scholar] [CrossRef]
- Aydogdu, M.O.; Oner, E.T.; Ekren, N.; Erdemir, G.; Kuruca, S.E.; Yuca, E.; Bostan, M.S.; Eroglu, M.S.; Ikram, F.; Uzun, M.; et al. Comparative Characterization of the Hydrogel Added PLA/β-TCP Scaffolds Produced by 3D Bioprinting. Bioprinting 2019, 13, e00046. [Google Scholar] [CrossRef]
- Ikram, H.; Al Rashid, A.; Koç, M. Synthesis and Characterization of Hematite (α-Fe2O3) Reinforced Polylactic Acid (PLA) Nanocomposites for Biomedical Applications. Compos. Part C Open Access 2022, 9, 100331. [Google Scholar] [CrossRef]
- Walejewska, E.; Idaszek, J.; Heljak, M.; Chlanda, A.; Choinska, E.; Hasirci, V.; Swieszkowski, W. The Effect of Introduction of Filament Shift on Degradation Behaviour of PLGA- and PLCL-Based Scaffolds Fabricated via Additive Manufacturing. Polym. Degrad. Stab. 2020, 171, 109030. [Google Scholar] [CrossRef]
- Dávila, J.L.; Freitas, M.S.; Inforçatti Neto, P.; Silveira, Z.C.; Silva, J.V.L.; d’Ávila, M.A. Fabrication of PCL/β-TCP Scaffolds by 3D Mini-Screw Extrusion Printing. J. Appl. Polym. Sci. 2016, 133, 43031. [Google Scholar] [CrossRef]
- Green, S. Compounds and Composite Materials. In PEEK Biomaterials Handbook; William Andrew Publishing: Norwich, NY, USA, 2012; pp. 23–48. [Google Scholar] [CrossRef]
- Peng, S.; Feng, P.; Wu, P.; Huang, W.; Yang, Y.; Guo, W.; Gao, C.; Shuai, C. Graphene Oxide as an Interface Phase between Polyetheretherketone and Hydroxyapatite for Tissue Engineering Scaffolds. Sci. Rep. 2017, 7, 46604. [Google Scholar] [CrossRef]
- Mohammadi Zerankeshi, M.; Bakhshi, R.; Alizadeh, R. Polymer/Metal Composite 3D Porous Bone Tissue Engineering Scaffolds Fabricated by Additive Manufacturing Techniques: A Review. Bioprinting 2022, 25, e00191. [Google Scholar] [CrossRef]
- Santos, A.M.D.; Habert, A.C.; Ferraz, H.C. Development of Functionalized Polyetherimide/Polyvinylpyrrolidone Membranes for Application in Hemodialysis. J. Mater. Sci. Mater. Med. 2017, 28, 131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, R.; Wu, W.; Qing, Y.; Tang, X.; Ye, W.; Zhang, Z.; Qin, Y. Adhesion and Proliferation of Osteoblast-Like Cells on Porous Polyetherimide Scaffolds. Biomed. Res. Int. 2018, 2018, 1491028. [Google Scholar] [CrossRef] [Green Version]
- Kanwar, S.; Vijayavenkataraman, S. Design of 3D Printed Scaffolds for Bone Tissue Engineering: A Review. Bioprinting 2021, 24, e00167. [Google Scholar] [CrossRef]
- Polley, C.; Distler, T.; Detsch, R.; Lund, H.; Springer, A.; Boccaccini, A.R.; Seitz, H. 3D Printing of Piezoelectric Barium Titanate-Hydroxyapatite Scaffiolds with Interconnected Porosity for Bone Tissue Engineering. Materials 2020, 13, 1773. [Google Scholar] [CrossRef] [PubMed]
- Al Rashid, A.; Abdul Qadir, S.; Koç, M. Microscopic Analysis on Dimensional Capability of Fused Filament Fabrication Three-Dimensional Printing Process. J. Elastomers Plast. 2021, 54, 385–403. [Google Scholar] [CrossRef]
- Wegener, B.; Sichler, A.; Milz, S.; Sprecher, C.; Pieper, K.; Hermanns, W.; Jansson, V.; Nies, B.; Kieback, B.; Müller, P.E.; et al. Development of a Novel Biodegradable Porous Iron-Based Implant for Bone Replacement. Sci. Rep. 2020, 10, 9141. [Google Scholar] [CrossRef] [PubMed]
- Soleymani Eil Bakhtiari, S.; Karbasi, S.; Toloue, E.B. Modified Poly(3-Hydroxybutyrate)-Based Scaffolds in Tissue Engineering Applications: A Review. Int. J. Biol. Macromol. 2021, 166, 986–998. [Google Scholar] [CrossRef]
- Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Ul Haq, M.I. 3D Printing—A Review of Processes, Materials and Applications in Industry 4.0. Sustain. Oper. Comput. 2022, 3, 33–42. [Google Scholar] [CrossRef]
- Yadav, A.; Ghosh, S.; Samanta, A.; Pal, J.; Srivastava, R. Emulsion Templated Scaffolds of Poly(ɛ-Caprolactone)—A Review. Chem. Commun. 2022, 58, 1468–1480. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Zolfagharian, A.; Bodaghi, M. 4D Bioprinting of Smart Polymers for Biomedical Applications: Recent Progress, Challenges, and Future Perspectives. React. Funct. Polym. 2022, 179, 105374. [Google Scholar] [CrossRef]
- Al Rashid, A.; Khan, S.A.; Al-Ghamdi, S.G.; Koç, M. Additive Manufacturing: Technology, Applications, Markets, and Opportunities for the Built Environment. Autom. Constr. 2020, 118, 103268. [Google Scholar] [CrossRef]
- Goh, G.L.; Zhang, H.; Chong, T.H.; Yeong, W.Y. 3D Printing of Multilayered and Multimaterial Electronics: A Review. Adv. Electron. Mater. 2021, 7, 2100445. [Google Scholar] [CrossRef]
- Yilmaz, B.; Tahmasebifar, A.; Baran, E.T. Bioprinting {Technologies} in {Tissue} {Engineering}. In Current {Applications} of {Pharmaceutical} {Biotechnology}; Silva, A.C., Moreira, J.N., Lobo, J.M.S., Almeida, H., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 171, pp. 279–319. ISBN 978-3-030-40463-5; 978-3-030-40464-2. [Google Scholar]
- Wang, Z.; Wang, Y.; Yan, J.; Zhang, K.; Lin, F.; Xiang, L.; Deng, L.; Guan, Z.; Cui, W.; Zhang, H. Pharmaceutical Electrospinning and 3D Printing Scaffold Design for Bone Regeneration. Adv. Drug. Deliv. Rev. 2021, 174, 504–534. [Google Scholar] [CrossRef] [PubMed]
- Goh, G.D.; Lee, J.M.; Goh, G.L.; Huang, X.; Lee, S.; Yeong, W.Y. Machine Learning for Bioelectronics on Wearable and Implantable Devices: Challenges and Potential. Tissue Eng. Part A 2023, 29, 20–46. [Google Scholar] [CrossRef]
- Ikram, H.; Al Rashid, A.; Koç, M. Additive Manufacturing of Smart Polymeric Composites: Literature Review and Future Perspectives. Polym. Compos. 2022, 43, 6355–6380. [Google Scholar] [CrossRef]
- Tang, X.; Qin, Y.; Xu, X.; Guo, D.; Ye, W.; Wu, W.; Li, R. Fabrication and in Vitro Evaluation of 3D Printed Porous Polyetherimide Scaffolds for Bone Tissue Engineering. Biomed. Res. Int. 2019, 2019, 2076138. [Google Scholar] [CrossRef] [Green Version]
- Suffo, M.; Revenga, C. Biomechanical Analysis of Non-Metallic Biomaterial in the Manufacture of a New Knee Prosthesis. Materials 2021, 14, 5951. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Vaganov, G.V.; Yudin, V.E.; Smirnova, N.V.; Ivan’kova, E.M.; Popova, E.N. Study of Polyetherimide and Its Nanocomposite 3D Printed Samples for Biomedical Application. Polym. Sci. Ser. A 2020, 62, 337–342. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, M.; Chohan, J.S. The Role of Additive Manufacturing for Biomedical Applications: A Critical Review. J. Manuf. Process. 2021, 64, 828–850. [Google Scholar] [CrossRef]
- Alblooshi, E.H.M.A. Fabrication of Chemically-Functionalized 3Dprinted Porous Scaffolds For Biomedical Applications. Master’s Thesis, United Arab Emirates University, Al Ain, United Arab Emirates, 2021. Available online: https://scholarworks.uaeu.ac.ae/all_theses/820 (accessed on 25 February 2023).
- Alkebsi, E.A.A.; Outtas, T.; Almutawakel, A.; Ameddah, H.; Kanit, T. Design of Mechanically Compatible Lattice Structures Cancellous Bone Fabricated by Fused Filament Fabrication of Z-ABS Material. Mech. Adv. Mater. Struct. 2022. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Z.; Yan, R.; Yang, Y. Mechanical Properties of Graded Scaffolds Developed by Curve Interference Coupled with Selective Laser Sintering. Mater. Sci. Eng. C 2020, 116, 111181. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, J.; Wei, Y.; Yu, T. Design and Properties of Graded Polyamide12/Hydroxyapatite Scaffolds Based on Primitive Lattices Using Selective Laser Sintering. J. Mech. Behav. Biomed. Mater. 2022, 126, 105052. [Google Scholar] [CrossRef] [PubMed]
- Al Rashid, A.; Koç, M. Fused Filament Fabrication Process: A Review of Numerical Simulation Techniques. Polymers 2021, 13, 3534. [Google Scholar] [CrossRef]
- Imran, R.; Al Rashid, A.; Koç, M. Review on Computational Modeling for the Property, Process, Product and Performance (PPPP) Characteristics of Additively Manufactured Porous Magnesium Implants. Bioprinting 2022, 28, e00236. [Google Scholar] [CrossRef]
- Al Rashid, A.; Koç, M. Experimental Validation of Numerical Model for Thermomechanical Performance of Material Extrusion Additive Manufacturing Process: Effect of Process Parameters. Polymers 2022, 14, 3482. [Google Scholar] [CrossRef]
- Al Rashid, A.; Koç, M. Numerical Simulations on Thermomechanical Performance of 3D Printed Chopped Carbon Fiber-Reinforced Polyamide-6 Composites: Effect of Infill Design. J. Appl. Polym. Sci. 2022, 139, e53081. [Google Scholar] [CrossRef]
- Al Rashid, A.; Koç, M. Experimental Validation of Numerical Model for Thermomechanical Performance of Material Extrusion Additive Manufacturing Process: Effect of Infill Design & Density. Results Eng. 2022, 14, 100860. [Google Scholar] [CrossRef]
- Al Rashid, A.; Ikram, H.; Koç, M. Effect of carbon fiber reinforcement on dimensional variations of 3D printed polyamide-6 composites: A simulation study. Turk. J. Chem. 2023, 47, 33–39. [Google Scholar] [CrossRef]
- Food4Rhino IntraLattice. Available online: https://www.food4rhino.com/en/app/intralattice (accessed on 23 November 2022).
- e-Xstream Digimat-AM Simulation Solution for Additive Manufacturing. Available online: https://www.e-xstream.com/product/digimat-am (accessed on 15 March 2022).
- Al Rashid, A.; Koc, M. Creep and Recovery Behavior of Continuous Fiber-Reinforced 3DP Composites. Polymers 2021, 13, 1644. [Google Scholar] [CrossRef]
No. | Material | Unit Cell Design | Extrusion Temperature | Build Plate Temperature | Printing Speed (mm/s) |
---|---|---|---|---|---|
1 | PEI | Ventils | 360 °C | 100 °C | 70 |
2 | Grid | ||||
3 | Octet | ||||
4 | ABS | Ventils | 230 °C | 80 °C | 55 |
5 | Grid | ||||
6 | Octet | ||||
7 | PA12 | Ventils | 245 °C | 60 °C | 70 |
8 | Grid | ||||
9 | Octet |
No. | Material | Unit Cell Design | Maximum Displacement (mm) | Von Mises Stress (MPa) |
---|---|---|---|---|
1 | PEI | Ventils | 0.1451 | 181.1 |
2 | Grid | 0.1168 | 90.5 | |
3 | Octet | 0.2172 | 255.4 | |
4 | ABS | Ventils | 0.1535 | 157.8 |
5 | Grid | 0.1629 | 76.49 | |
6 | Octet | 0.2445 | 245.1 | |
7 | PA12 | Ventils | 0.2316 | 108.8 |
8 | Grid | 0.2437 | 60.24 | |
9 | Octet | 0.3459 | 163.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, R.; Al Rashid, A.; Koç, M. Material Extrusion 3D Printing (ME3DP) Process Simulations of Polymeric Porous Scaffolds for Bone Tissue Engineering. Materials 2023, 16, 2475. https://doi.org/10.3390/ma16062475
Imran R, Al Rashid A, Koç M. Material Extrusion 3D Printing (ME3DP) Process Simulations of Polymeric Porous Scaffolds for Bone Tissue Engineering. Materials. 2023; 16(6):2475. https://doi.org/10.3390/ma16062475
Chicago/Turabian StyleImran, Ramsha, Ans Al Rashid, and Muammer Koç. 2023. "Material Extrusion 3D Printing (ME3DP) Process Simulations of Polymeric Porous Scaffolds for Bone Tissue Engineering" Materials 16, no. 6: 2475. https://doi.org/10.3390/ma16062475
APA StyleImran, R., Al Rashid, A., & Koç, M. (2023). Material Extrusion 3D Printing (ME3DP) Process Simulations of Polymeric Porous Scaffolds for Bone Tissue Engineering. Materials, 16(6), 2475. https://doi.org/10.3390/ma16062475