Electrospinning Mo-Doped Carbon Nanofibers as an Anode to Simultaneously Boost Bioelectrocatalysis and Extracellular Electron Transfer in Microbial Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Mo-Doped Carbon Nanofibers
2.2. Electrochemical Characterization
2.3. MFC Setup and Operation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gul, H.; Raza, W.; Lee, J.; Azam, M.; Ashraf, M.; Kim, K.H. Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. Chemosphere 2021, 281, 130828. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.C.; Zhang, J.; Zhang, Y.Z.; Guo, Q.; Hu, T.; Xiao, H.; Lu, W.; Jia, J. Progress on anodic modification materials and future development directions in microbial fuel cells. J. Power Sources 2023, 556, 232486. [Google Scholar] [CrossRef]
- Saran, C.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Romanholo Ferreira, L.F.; Bilal, M.; Iqbal, H.M.N.; Hussain, C.M.; Mulla, S.I.; Bharagava, R.N. Microbial fuel cell: A green eco-friendly agent for tannery wastewater treatment and simultaneous bioelectricity/power generation. Chemosphere 2023, 312, 137072. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.Z.; Rafatullah, M. Recent advances in soil microbial fuel cells for soil contaminants remediation. Chemosphere 2021, 272, 129691. [Google Scholar] [CrossRef]
- Qiao, Y.; Bao, S.-J.; Li, C.M. Electrocatalysis in microbial fuel cells—From electrode material to direct electrochemistry. Energy Environ. Sci. 2010, 3, 544–553. [Google Scholar] [CrossRef]
- Agrahari, R.; Bayar, B.; Abubackar, H.N.; Giri, B.S.; Rene, E.R.; Rani, R. Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells. Chemosphere 2022, 290, 133184. [Google Scholar] [CrossRef]
- Fan, X.Q.; Zhou, Y.; Jin, X.K.; Song, R.B.; Li, Z.; Zhang, Q. Carbon material-based anodes in the microbial fuel cells. Carbon Energy 2021, 3, 449–472. [Google Scholar] [CrossRef]
- Massaglia, G.; Margaria, V.; Fiorentin, M.R.; Pasha, K.; Sacco, A.; Castellino, M.; Chiodoni, A.; Bianco, S.; Pirri, F.C.; Quaglio, M. Nonwoven mats of N-doped carbon nanofibers as high-performing anodes in microbial fuel cells. Mater. Today Energy 2020, 16, 100385. [Google Scholar] [CrossRef]
- Cai, T.; Huang, M.H.; Huang, Y.X.; Zheng, W. Enhanced performance of microbial fuel cells by electrospinning carbon nanofibers hybrid carbon nanotubes composite anode. Int. J. Hydrogen Energy 2019, 44, 3088–3098. [Google Scholar] [CrossRef]
- Yang, X.L.; Chen, Y.M.; Zhang, C.M.; Duan, G.; Jiang, S. Electrospun carbon nanofibers and their reinforced composites: Preparation, modification, applications, and perspectives. Compos. Part B Eng. 2023, 249, 110386. [Google Scholar] [CrossRef]
- Qian, M.M.; Zhang, W.Z.; Luo, G.; Wu, C.; Qin, W. Air-stabilized pore structure engineering of antimony-based anode by electrospinning for potassium ion batteries. J. Colloid Interface Sci. 2023, 633, 352–361. [Google Scholar] [CrossRef]
- Wang, C.X.; Liu, Y.; Jia, Z.R.; Zhao, W.; Wu, G. Multicomponent Nanoparticles Synergistic One-Dimensional Nanofibers as Heterostructure Absorbers for Tunable and Efficient Microwave Absorption. Nano-Micro Lett. 2022, 15, 13. [Google Scholar] [CrossRef] [PubMed]
- Ahmadijokani, F.; Molavi, H.; Bahi, A.; Fernández, R.; Alaee, P.; Wu, S.; Wuttke, S.; Ko, F.; Arjmand, M. Metal-Organic Frameworks and Electrospinning: A Happy Marriage for Wastewater Treatment. Adv. Funct. Mater. 2022, 32, 2207723. [Google Scholar] [CrossRef]
- Lin, X.Q.; Zheng, L.S.; Zhang, M.; Qin, Y.; Liu, Y.; Li, H.; Li, C. Simultaneous boost of anodic electron transfer and exoelectrogens enrichment by decorating electrospinning carbon nanofibers in microbial fuel cell. Chemosphere 2022, 308, 136434. [Google Scholar] [CrossRef]
- Jiang, N.; Song, J.L.; Yan, M.Y.; Hu, Y.; Wang, M.; Liu, Y.; Huang, M. Iron cobalt-doped carbon nanofibers anode to simultaneously boost bioelectrocatalysis and direct electron transfer in microbial fuel cells: Characterization, performance, and mechanism. Bioresour. Technol. 2023, 367, 128230. [Google Scholar] [CrossRef]
- Liu, Y.F.; Wang, J.; Sun, Y.X.; Li, H.; Zhai, Z.; Guo, S.; Ren, T.; Li, C. Nitrogen-doped carbon nanofibers anchoring Fe nanoparticles as biocompatible anode for boosting extracellular electron transfer in microbial fuel cells. J. Power Sources 2022, 544, 231890. [Google Scholar] [CrossRef]
- Zou, L.; Huang, Y.H.; Wu, X.; Long, Z.-e. Synergistically promoting microbial biofilm growth and interfacial bioelectrocatalysis by molybdenum carbide nanoparticles functionalized graphene anode for bioelectricity production. J. Power Sources 2019, 413, 174–181. [Google Scholar] [CrossRef]
- Zou, L.; Lu, Z.S.; Huang, Y.H.; Long, Z.-e.; Qiao, Y. Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells. J. Power Sources 2017, 359, 549–555. [Google Scholar] [CrossRef]
- Qian, S.W.; Wu, X.S.; Shi, Z.Z.; Li, X.; Sun, X.; Ma, Y.; Sun, W.; Guo, C.; Li, C. Tuning electrospinning hierarchically porous nanowires anode for enhanced bioelectrocatalysis in microbial fuel cells. Nano Res. 2022, 15, 5089–5097. [Google Scholar] [CrossRef]
- Sun, X.; Wu, X.S.; Shi, Z.Z.; Li, X.; Qian, S.; Ma, Y.; Sun, W.; Guo, C.; Li, C.M. Electrospinning iron-doped carbon fiber to simultaneously boost both mediating and direct biocatalysis for high-performance microbial fuel cell. J. Power Sources 2022, 530, 231277. [Google Scholar] [CrossRef]
- Jiang, R.; Li, L.; Sheng, T.; Hu, G.; Chen, Y.; Wang, L. Edge-Site Engineering of Atomically Dispersed Fe–N4 by Selective C–N Bond Cleavage for Enhanced Oxygen Reduction Reaction Activities. J. Am. Chem. Soc. 2018, 140, 11594–11598. [Google Scholar] [CrossRef]
- Zeng, L.; Zhao, S.; Zhang, L.; He, M. A facile synthesis of molybdenum carbide nanoparticles-modified carbonized cotton textile as an anode material for high-performance microbial fuel cells. RSC Adv. 2018, 8, 40490–40497. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.X.; Chen, M.Q.; Liu, X.Q.; Cheng, F.; Lu, X. Mo2C/Reduced Graphene Oxide Composites with Enhanced Electrocatalytic Activity and Biocompatibility for Microbial Fuel Cells. Chemistry 2021, 27, 4291–4296. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Hu, J.; Zhang, C.X.; Cheung, A.T.F.; Zhang, Y.; Liu, L.; Leung, M.K.H. Mo2C embedded on nitrogen-doped carbon toward electrocatalytic nitrogen reduction to ammonia under ambient conditions. Int. J. Hydrogen Energy 2021, 46, 13011–13019. [Google Scholar] [CrossRef]
- Ren, G.Y.; Lu, X.Y.; Li, Y.N.; Zhu, Y.; Dai, L.; Jiang, L. Porous Core-Shell Fe3C Embedded N-doped Carbon Nanofibers as an Effective Electrocatalysts for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2016, 8, 4118–4125. [Google Scholar] [CrossRef]
- Lou, X.; Liu, Z.; Hou, J.; Zhou, Y.; Chen, W.; Xing, X.; Li, Y.; Liao, Q.; Zhu, X. Modification of the anodes using MoS2 nanoflowers for improving microbial fuel cells performance. Catal. Today 2021, 364, 111–117. [Google Scholar] [CrossRef]
- Tahir, K.; Miran, W.; Jang, J.; Maile, N.; Shahzad, A.; Moztahida, M.; Ghani, A.A.; Kim, B.; Lee, D.S. MnCo2O4 coated carbon felt anode for enhanced microbial fuel cell performance. Chemosphere 2021, 265, 129098. [Google Scholar] [CrossRef]
- Lascu, I.; Locovei, C.; Bradu, C.; Gheorghiu, C.; Tanase, A.M.; Dumitru, A. Polyaniline-Derived Nitrogen-Containing Carbon Nanostructures with Different Morphologies as Anode Modifier in Microbial Fuel Cells. Int. J. Mol. Sci. 2022, 23, 11230. [Google Scholar] [CrossRef] [PubMed]
- Pu, K.-B.; Zhang, K.; Guo, K.; Min, B.; Chen, Q.-Y.; Wang, Y.-H. Firmly coating carbon nanoparticles onto titanium as high performance anodes in microbial fuel cells. Electrochim. Acta 2021, 399, 139416. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Cui, D.; Xiang, X.; Li, W. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell. Biosens. Bioelectron. 2014, 51, 349–355. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, X.; Yu, Y.-Y.; Wang, Y.-Z.; Shi, Y.-T.; Cheng, Q.-W.; Fang, Z.; Yong, Y.-C. Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting. Electrochim. Acta 2017, 255, 41–47. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Li, X.; Shi, Z.; Wang, X.; Wang, Z.; Li, C.M. Electrospinning Mo-Doped Carbon Nanofibers as an Anode to Simultaneously Boost Bioelectrocatalysis and Extracellular Electron Transfer in Microbial Fuel Cells. Materials 2023, 16, 2479. https://doi.org/10.3390/ma16062479
Wu X, Li X, Shi Z, Wang X, Wang Z, Li CM. Electrospinning Mo-Doped Carbon Nanofibers as an Anode to Simultaneously Boost Bioelectrocatalysis and Extracellular Electron Transfer in Microbial Fuel Cells. Materials. 2023; 16(6):2479. https://doi.org/10.3390/ma16062479
Chicago/Turabian StyleWu, Xiaoshuai, Xiaofen Li, Zhuanzhuan Shi, Xiaohai Wang, Zhikai Wang, and Chang Ming Li. 2023. "Electrospinning Mo-Doped Carbon Nanofibers as an Anode to Simultaneously Boost Bioelectrocatalysis and Extracellular Electron Transfer in Microbial Fuel Cells" Materials 16, no. 6: 2479. https://doi.org/10.3390/ma16062479
APA StyleWu, X., Li, X., Shi, Z., Wang, X., Wang, Z., & Li, C. M. (2023). Electrospinning Mo-Doped Carbon Nanofibers as an Anode to Simultaneously Boost Bioelectrocatalysis and Extracellular Electron Transfer in Microbial Fuel Cells. Materials, 16(6), 2479. https://doi.org/10.3390/ma16062479