Chemical Dissolution-Assisted Ultrafine Grinding for Preparation of Quasi-Spherical Colloids of Zinc Oxide
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation
2.3. Characterizations
2.4. Simulation by Modeling
3. Results and Discussion
3.1. Wet Ultrafine Grinding without and with Chemical Dissolution
3.2. Chemical Dissolution Due to Mechanochemical Effect
3.3. Simulation and Grinding Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdelaal, H.M.; Shaikjee, A.; Esmat, M. High performing photocatalytic ZnO hollow sub-micro-spheres fabricated by microwave induced self-assembly approach. Ceram. Int. 2020, 46, 19815–19821. [Google Scholar] [CrossRef]
- Izumi, T.; Izumi, K.; Kuroiwa, N.; Senjuh, A.; Fujimoto, A.; Adachi, M.; Yamamoto, T. Preparation of electrically conductive nano-powder of zinc oxide and application to transparent film coating. J. Alloys Compd. 2009, 480, 123–125. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [Green Version]
- Moezzi, A.; Mcdonagh, A.M.; Cortie, M.B. Zinc oxide particles: Synthesis, properties and applications. Chem. Eng. J. 2012, 185–186, 1–22. [Google Scholar] [CrossRef]
- Włoch, M.; Bagiński, F.; Koziński, P.; Datta, J. Submicron inorganic particles as an additional filler in hybrid epoxy matrix composites reinforced with glass fibres. Polym. Polym. Compos. 2020, 28, 484–491. [Google Scholar] [CrossRef]
- Goto, T.; Yin, S.; Sato, T.; Tanaka, T. Morphological control of zinc oxide and application to cosmetics. Int. J. Nanotechnol. 2013, 10, 48–56. [Google Scholar] [CrossRef]
- Haile, S.M.; Johnson, D.W., Jr.; Wiseman, G.H.; Bowen, H.K. Aqueous Precipitation of Spherical Zinc Oxide Powders for Varistor Applications. J. Am. Ceram. Soc. 1989, 72, 2004–2008. [Google Scholar] [CrossRef]
- Yuan, F.; Li, J.; Ji, Y. Effect of ZnO powder shape and size on ceramic varistors. Gongneng Cailiao/J. Funct. Mater. 1997, 28, 392–395. [Google Scholar]
- Kumar, K.M.; Mandal, B.K.; Naidu, E.A.; Sinha, M.; Kumar, K.S.; Reddy, P.S. Synthesis and characterisation of flower shaped Zinc Oxide nanostructures and its antimicrobial activity. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2013, 104, 171–174. [Google Scholar] [CrossRef]
- Ristić, M.; Musić, S.; Ivanda, M.; Popović, S. Sol–gel synthesis and characterization of nanocrystalline ZnO powders. J. Alloys Compd. 2005, 397, L1–L4. [Google Scholar] [CrossRef]
- Chen, D.; Jiao, X.; Cheng, G. Hydrothermal synthesis of zinc oxide powders with different morphologies. Solid State Commun. 1999, 113, 363–366. [Google Scholar] [CrossRef]
- Lu, C.H.; Yeh, C.H. Emulsion precipitation of submicron zinc oxide powder. Mater. Lett. 1997, 33, 129–132. [Google Scholar] [CrossRef]
- Shouaib, D.; Farghali, A.; Yousif, A.; Aggour, M.; Khedr, M. The role of NaOH content, grinding time, and drying temperature in controlling the shape and size of nano ZnO synthesized by a green chemistry approach. Egypt. J. Chem. 2020, 63, 3597–3606. [Google Scholar] [CrossRef]
- Tani, T.; Mädler, L.; Pratsinis, S.E. Synthesis of zinc oxide/silica composite nanoparticles by flame spray pyrolysis. J. Mater. Sci. 2002, 37, 4627–4632. [Google Scholar] [CrossRef]
- Chen, M.; Liu, X.; Liu, Y.; Zhao, M. Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets. J. Appl. Phys. 2012, 111, 103108. [Google Scholar] [CrossRef]
- Boulos, M. Plasma power can make better powders. Met. Powder Rep. 2004, 59, 16–21. [Google Scholar] [CrossRef]
- Varinot, C.; Hiltgun, S.; Pons, M.N.; Dodds, J. Identification of the fragmentation mechanisms in wet-phase fine grinding in a stirred bead mill. Chem. Eng. Sci. 1997, 52, 3605–3612. [Google Scholar] [CrossRef]
- Domingos, R.F.; Rafiei, Z.; Monteiro, C.E.; Khan, M.A.; Wilkinson, K.J. Agglomeration and dissolution of zinc oxide nanoparticles: Role of pH, ionic strength and fulvic acid. Environ. Chem. 2013, 10, 306. [Google Scholar] [CrossRef]
- Gutknecht, T.; Gustafsson, A.; Forsgren, C.; Ekberg, C.; Steenari, B.-M. Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis. Sci. World J. 2015, 2015, 653219. [Google Scholar] [CrossRef] [Green Version]
- Irannajad, M.; Salmani Nuri, O.; Mehdilo, A. Surface dissolution-assisted mineral flotation: A review. J. Environ. Chem. Eng. 2019, 7, 103050. [Google Scholar] [CrossRef]
- Chaudhari, R.; Landge, D.; Bhongale, C.J. A new insight into the adsorption-dissolution growth mechanism of zinc oxide hollow hexagonal nanotowers. RSC Adv. 2019, 9, 20728–20732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Qiu, W.; Gao, W. Potential dissolution and photo-dissolution of ZnO thin films. J. Hazard. Mater. 2010, 178, 115–122. [Google Scholar] [CrossRef]
- Chen, J.; Pan, Z.; Wang, Y. Preparation of submicron-sized quasi-spherical silica particles via ultrafine grinding with chemical dissolution assistance. Powder Technol. 2018, 339, 585–594. [Google Scholar] [CrossRef]
- Naito, M.; Hayakawa, O.; Nakahira, K.; Mori, H.; Tsubaki, J. Effect of particle shape on the particle size distribution measured with commercial equipment. Powder Technol. 1998, 100, 52–60. [Google Scholar] [CrossRef]
- Reid, K.J. A solution to the batch grinding equation. Chem. Eng. Sci. 1965, 20, 953–963. [Google Scholar] [CrossRef]
- Kapur, P.C.; Agrawal, P.K. Approximate solutions to the discretized batch grinding equation. Chem. Eng. Sci. 1970, 25, 1111–1113. [Google Scholar] [CrossRef]
- Kaya, E.; Hogg, R.; Kumar, S. Particle Shape Modification in Comminution. Kona 2002, 20, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Forssberg, E. Prediction of product size distributions for a stirred ball mill. Powder Technol. 1995, 84, 101–106. [Google Scholar] [CrossRef]
- Cardoso, D.; Narcy, A.; Durosoy, S.; Bordes, C.; Chevalier, Y. Dissolution kinetics of zinc oxide and its relationship with physicochemical characteristics. Powder Technol. 2021, 378, 746–759. [Google Scholar] [CrossRef]
- Johnson, S.B.; Brown, G.E.; Healy, T.W.; Scales, P.J. Adsorption of Organic Matter at Mineral/Water Interfaces. 6. Effect of Inner-Sphere versus Outer-Sphere Adsorption on Colloidal Stability. Langmuir 2005, 21, 6356–6365. [Google Scholar] [CrossRef]
- David, C.A.; Galceran, J.; Rey-Castro, C.; Puy, J.; Companys, E.; Salvador, J.; Monné, J.; Wallace, R.; Vakourov, A. Dissolution Kinetics and Solubility of ZnO Nanoparticles followed by AGNES. J. Phys. Chem. C 2012, 116, 11758–11767. [Google Scholar] [CrossRef]
- Mudunkotuwa, I.A.; Rupasinghe, T.; Wu, C.M.; Grassian, V.H. Dissolution of ZnO Nanoparticles at Circumneutral pH: A Study of Size Effects in the Presence and Absence of Citric Acid. Langmuir 2011, 28, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Xue, Q.; Ding, H.; Li, Z. Mechanochemical effects of ZnO powder in a wet super-fine grinding system as indicated by instrumental characterization. Int. J. Miner. Process. 2015, 141, 15–19. [Google Scholar] [CrossRef]
- Hennart, S.L.A.; Wildeboer, W.J.; Van Hee, P.; Meesters, G.M.H. Identification of the grinding mechanisms and their origin in a stirred ball mill using population balances. Chem. Eng. Sci. 2009, 64, 4123–4130. [Google Scholar] [CrossRef]
- Kwade, A. Determination of the most important grinding mechanism in stirred media mills by calculating stress intensity and stress number. Powder Technol. 1999, 105, 382–388. [Google Scholar] [CrossRef]
Factors | Solution Type | Acid or Alkali Concentration (M or mol/L) | Solid Content (wt.%) | Grinding Time (min) |
---|---|---|---|---|
Levels | HCl CH3COOH (COOH)2·2H2O C6H8O7 NH4OH/NH4Cl NaOH Water | 0.005 0.010 0.050 0.100 | 20 30 40 | 30 45 60 |
Solution Type | d50 (nm) | Uniformity Distribution Coefficient, n | Sphericity | Specific Surface Area (m2/g) |
---|---|---|---|---|
Feed | 639 | 1.38 | 0.73 | 3.55 |
Water | 453 | 1.64 | 0.78 | 9.77 |
HCl | 426 | 1.92 | 0.83 | 9.87 |
CH3COOH | 370 | 2.28 | 0.91 | 11.39 |
(COOH)2·2H2O | 398 | 2.05 | 0.87 | 10.23 |
C6H8O7 | 409 | 1.94 | 0.85 | 10.10 |
NaOH | 421 | 1.96 | 0.83 | 9.93 |
NH4OH/NH4Cl | 433 | 1.85 | 0.83 | 9.85 |
Solution Type | Concentration (mol/L) | d50 (nm) | Uniformity Distribution Coefficient, n | Sphericity |
---|---|---|---|---|
CH3COOH | 0.005 | 382 | 2.14 | 0.89 |
CH3COOH | 0.010 | 370 | 2.28 | 0.91 |
CH3COOH | 0.050 | 424 | 0.84 | 0.86 |
CH3COOH | 0.100 | 485 | 0.76 | 0.85 |
C6H8O7 | 0.010 | 409 | 1.94 | 0.85 |
C6H8O7 | 0.050 | 401 | 1.98 | 0.86 |
C6H8O7 | 0.100 | 390 | 2.01 | 0.87 |
HCl | 0.010 | 426 | 1.92 | 0.83 |
HCl | 0.050 | 459 | 0.83 | 0.81 |
HCl | 0.100 | 537 | 0.75 | 0.80 |
NaOH | 0.010 | 421 | 1. 96 | 0.83 |
NaOH | 0.050 | 432 | 1.89 | 0.83 |
NaOH | 0.100 | 439 | 1.83 | 0.84 |
Feed | 639 | 1.38 | 0.73 |
Solution Type | Time (min) | d50 (nm) | Uniformity Distribution Coefficient, n | Sphericity |
---|---|---|---|---|
CH3COOH | 30 | 370 | 2.28 | 0.91 |
CH3COOH | 45 | 350 | 2.32 | 0.90 |
CH3COOH | 60 | 336 | 2.38 | 0.87 |
Water | 30 | 453 | 1.64 | 0.78 |
Water | 45 | 425 | 1.93 | 0.80 |
Water | 60 | 407 | 1.95 | 0.81 |
Solid Content (wt.%) | d50 (nm) | Uniformity Distribution Coefficient, n | Sphericity |
---|---|---|---|
20 wt.% | 370 | 2.28 | 0.91 |
30 wt.% | 402 | 1.90 | 0.85 |
40 wt.% | 462 | 1.80 | 0.83 |
Size Class (i) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Size range (nm) | >1054 | 850–1054 | 686–850 | 554–686 | 447–554 | 361–447 | 291–361 | 235–291 | 190–235 | <190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, G.; Chen, Z.; Pan, Z.; Xu, Y.; Hu, H.; Wang, Y. Chemical Dissolution-Assisted Ultrafine Grinding for Preparation of Quasi-Spherical Colloids of Zinc Oxide. Materials 2023, 16, 2558. https://doi.org/10.3390/ma16072558
Huang G, Chen Z, Pan Z, Xu Y, Hu H, Wang Y. Chemical Dissolution-Assisted Ultrafine Grinding for Preparation of Quasi-Spherical Colloids of Zinc Oxide. Materials. 2023; 16(7):2558. https://doi.org/10.3390/ma16072558
Chicago/Turabian StyleHuang, Guanghua, Zening Chen, Zhidong Pan, Yan Xu, Hanlin Hu, and Yanmin Wang. 2023. "Chemical Dissolution-Assisted Ultrafine Grinding for Preparation of Quasi-Spherical Colloids of Zinc Oxide" Materials 16, no. 7: 2558. https://doi.org/10.3390/ma16072558
APA StyleHuang, G., Chen, Z., Pan, Z., Xu, Y., Hu, H., & Wang, Y. (2023). Chemical Dissolution-Assisted Ultrafine Grinding for Preparation of Quasi-Spherical Colloids of Zinc Oxide. Materials, 16(7), 2558. https://doi.org/10.3390/ma16072558