Study on the Influence of Weld Spacing on the Tensile Strength of Laser Double-Pass Reciprocating Welding of DP780/6061-T6 Dissimilar Metals
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Welding Trials
2.2. Numerical Model of Temperature Field
- Gauss heat source on the upper surface of the steel body ();
- Cylindrical heat source inside the steel body ();
- Semi-elliptical heat source inside the aluminum body ();
- The heat source model formula is as follows:
3. Results and Discussion
3.1. Tensile Strength of the Weldment
3.2. Analysis of Weld Cross-Section Appearance
3.3. Numerical Simulation Results of Temperature Field
3.4. SEM and EDS Analysis of Weld Cross-Section
3.5. SEM Observation of the Fractured Surface of the Aluminum Side
4. Conclusions
- (1)
- With the optimal laser parameters, when the weld spacing is 0–1.5 mm, the welding joint’s tensile strength increases with the weld spacing, and the maximum tensile strength can reach 76.84 MPa. When the weld spacing is 2.0 mm, the weld tensile strength decreases. In double-pass reciprocating welding, the tensile strength of the whole weldment mainly depends on the second weld seam.
- (2)
- Compared with other weld spacing, when the weld spacing is 1.5 mm, the preheating temperature at the steel side of the second weld seam is 421–423 K. The preheating temperature, peak temperature, and pool width on the steel side of the second weld are lower, while the preheating temperature of the aluminum side is 486 K, reaching the maximum. The peak value of weld penetration and molten pool center temperature reaches the maximum on the aluminum side. The thickness of Fe-Al IMCs in the steel-aluminum transition layer of the second weld is reduced to 8 μm. No needle-shaped FeAl3 is found near the steel–aluminum transition layer, and the fracture surface of the second weld is brittle fracture features.
- (3)
- The size of the molten pool of steel–aluminum welded joint is affected by preheating temperature, plasma shielding, and smoke shielding.
- (4)
- Preheating welding can adjust the relationship between penetration depth, pool width, and IMCs layer thickness in the laser double-pass reciprocating welding.
- (5)
- Proper weld spacing effectively improves weld forming quality in laser double-pass reciprocating welding of steel-aluminum dissimilar metals.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Long, Y.; Li, Z. Research progress of transition layer and filler wire for laser welding of steel and aluminum dissimilar metals. Int. J. Adv. Manuf. Technol. 2022, 119, 4149–4158. [Google Scholar] [CrossRef]
- Wang, H.; Qin, G.; Geng, P.; Ma, X. Interfacial microstructures and mechanical properties of friction welded Al/steel dissimilar joints. J. Manuf. Process. 2020, 49, 18–25. [Google Scholar] [CrossRef]
- Liu, F.C.; Dong, P. From thick intermetallic to nanoscale amorphous phase at Al-Fe joint interface: Roles of friction stir welding conditions. Scr. Mater. 2021, 191, 167–172. [Google Scholar] [CrossRef]
- Ma, H.; Qin, G.; Geng, P.; Wang, S.; Zhang, D. Microstructural characterisation and corrosion behaviour of aluminium alloy/steel hybrid structure produced by friction welding. J. Manuf. Process. 2021, 61, 349–356. [Google Scholar] [CrossRef]
- Khedr, M.; Hamada, A.; Järvenpää, A.; Elkatatny, S.; Abd-Elaziem, W. Review on the Solid-State Welding of Steels: Diffusion Bonding and Friction Stir Welding Processes. Metals 2023, 13, 54. [Google Scholar] [CrossRef]
- Silvayeh, Z.; Domitner, J.; Sommitsch, C.; Hartmann, M.; Karner, W.; Götzinger, B. Mechanical properties and fracture modes of thin butt-joined aluminum-steel blanks for automotive applications. J. Manuf. Process. 2020, 59, 456–467. [Google Scholar] [CrossRef]
- Kang, K.; Liu, Y.; Li, J.; Liu, C.; Zhen, Z.; Wang, Y.; Sun, Q. Microstructure and mechanical properties of Al/Steel butt joint by hybrid CMT welding with external axial magnetic field. Materials 2020, 13, 3601. [Google Scholar] [CrossRef]
- Mezrag, B.; Deschaux-Beaume, F.; Sabatier, L.; Wattrisse, B.; Benachour, M. Microstructure and properties of steel-aluminum Cold Metal Transfer joints. J. Mater. Process. Technol. 2020, 277, 116414. [Google Scholar] [CrossRef]
- Lu, Y.; Sage, D.D.; Fink, C.; Zhang, W. Dissimilar metal joining of aluminium to zinc-coated steel by ultrasonic plus resistance spot weldingmicrostructure and mechanical properties. Sci. Technol. Weld. Join. 2020, 25, 218–227. [Google Scholar] [CrossRef]
- Shi, L.; Kang, J.; Chen, X.; Haselhuhn, A.S.; Sigler, D.R.; Carlson, B.E. Effect of material inhomogeneity on fracture modes in aluminiumsteel resistance spot welds. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 2157–2168. [Google Scholar] [CrossRef]
- Nishino, S. Joining Mechanism on Resistance Spot-welding between Aluminum Alloy and Steel and Evaluation of Joining Strength. Keikinzoku Yosetsu/J. Light Met. Weld. 2020, 58, 392–400. [Google Scholar]
- Evdokimov, A.; Doynov, N.; Ossenbrink, R.; Obrosov, A.; Weiß, S.; Michailov, V. Thermomechanical laser welding simulation of dissimilar steel-aluminum overlap joints. Int. J. Mech. Sci. 2021, 190, 106019. [Google Scholar] [CrossRef]
- Wallerstein, D.; Lusquiños, F.; Comesaña, R.; Del Val, J.; Riveiro, A.; Badaoui, A.; Pou, J. Dissimilar unbeveled butt joints of AA6061 to S235 structural steel by means of standard single beam fiber laser welding-brazing. J. Mater. Process. Technol. 2021, 291, 116994. [Google Scholar] [CrossRef]
- Xuelong, C.; Gang, W.; Chang, X.; Caiwang, T.; Junjun, J. Effect of Cu/Ni foil interlayer on microstructure and mechanical properties of laser welded aluminum/steel joints. J. Aeronaut. Mater. 2020, 40, 70–78. [Google Scholar]
- Sadeghian, A.; Iqbal, N. A review on dissimilar laser welding of steel-copper, steel-aluminum, aluminum-copper, and steel-nickel for electric vehicle battery manufacturing. Opt. Laser. Technol. 2022, 146, 107595. [Google Scholar] [CrossRef]
- Shah, L.H.; Ishak, M. Review of Research Progress on Aluminum-Steel Dissimilar Welding. Mater. Manuf. Process. 2014, 29, 928–933. [Google Scholar] [CrossRef]
- Zhao, D.S.; Wu, L.L.; Zhang, T.F.; Kong, L.L.; Liu, Y.J. Effect of Preheating on Hot Cracking Susceptibility in Pulsed Laser Welding of Invar Alloy. J. Ship. Prod. Des. 2022, 38, 19–27. [Google Scholar] [CrossRef]
- Wang, J.N.; Chen, X.; Yang, L.F.; Zhang, G.C. Effect of preheat & post-weld heat treatment on the microstructure and mechanical properties of 6061-T6 aluminum alloy welded sheets. Mater. Sci. Eng. A Struct. Mater. 2022, 841, 143081. [Google Scholar]
- Ma, H.; Qin, G.; Wang, L.; Meng, X.; Chen, L. Effects of preheat treatment on microstructure evolution and properties of brazed-fusion welded joint of aluminum alloy to steel. Mater. Des. 2016, 90, 330–339. [Google Scholar] [CrossRef]
- Li, J.; Shen, J.; Hu, S.; Zhang, H.; Bu, X. Microstructure and mechanical properties of Ti-22Al-25Nb/TA15 dissimilar joint fabricated by dual-beam laser welding. Opt. Laser. Technol. 2019, 109, 123–130. [Google Scholar] [CrossRef]
- Chen, S.H.; Zhai, Z.L.; Huang, J.H.; Zhao, X.K.; Xiong, J.G. Interface microstructure and fracture behavior of single/dual-beam laser welded steel-Al dissimilar joint produced with copper interlayer. Int. J. Adv. Manuf. Technol. 2016, 82, 631–643. [Google Scholar] [CrossRef]
- Xia, H.; Tao, W.; Li, L.; Tan, C.; Zhang, K.; Ma, N. Effect of laser beam models on laser weldingbrazing Al to steel. Opt. Laser. Technol. 2020, 122, 105845. [Google Scholar] [CrossRef]
- Mohammadpour, M.; Yazdian, N.; Yang, G.; Wang, H.P.; Carlson, B.; Kovacevic, R. Effect of dual laser beam on dissimilar welding-brazing of aluminum to galvanized steel. Opt. Laser. Technol. 2018, 98, 214–228. [Google Scholar] [CrossRef]
- Indhu, R.; Tak, M.; Vijayaraghavan, L.; Soundarapandian, S. Microstructural evolution and its effect on joint strength during laser welding of dual phase steel to aluminium alloy. J. Manuf. Process. 2020, 58, 236–248. [Google Scholar]
- Liu, G.Q.; Gao, X.D.; Cong PE, N.G.; Liu, X.H.; Huang, Y.J.; Zhang, Y.X.; You, D.Y. Tensile resistance, microstructures of intermetallic compounds, and fracture modes of welded steel/aluminum joints produced using laser lap welding. Trans. Nonferrous. Met. Soc. China 2020, 30, 2639–2649. [Google Scholar] [CrossRef]
- Guangcan, J.; Yanfeng, X.; Sha, X. Microstructure of 6061 Aluminum Alloy/DP590 Galvanized Steel Sheet Joint Interface Formed by Cold Metal Transfer Welding. Mater. Mech. Eng. 2020, 44, 52–55. [Google Scholar]
- Kashani, H.T.; Kah, P.; Martikainen, J. Laser overlap welding of zinc-coated steel on aluminum alloy. In Proceedings of the 15th Nordic Laser Materials Processing Conference (Nolamp), Lappeenranta, Finland, 25–27 August 2015; Volume 78, pp. 265–271. [Google Scholar]
- Lee, K.J.; Kumai, S.; Arai, T. Interfacial microstructure and strength of steel to aluminum alloy lap joints welded by a defocused laser beam. Mater. Trans. 2005, 46, 1847–1856. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Harooni, M.; Carlson, B.; Kovacevic, R. Dissimilar joining of galvanized high-strength steel to aluminum alloy in a zero-gap lap joint configuration by two-pass laser welding. Mater. Des. 2014, 58, 390–401. [Google Scholar] [CrossRef]
Materials | Nominal Chemical Composition (wt. %) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mn | Si | Cu | Mg | Cr | C | P | S | Fe | Al | |
6061-T6 | 0.067 | 0.60 | 0.244 | 1.098 | 0.19 | - | - | - | 0.345 | Bal. |
DP780 | 1.99 | - | - | - | - | 0.094 | 0.0056 | 0.0023 | Bal. | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Qin, X.; Long, Y.; Zhou, J.; Jiao, H. Study on the Influence of Weld Spacing on the Tensile Strength of Laser Double-Pass Reciprocating Welding of DP780/6061-T6 Dissimilar Metals. Materials 2023, 16, 2560. https://doi.org/10.3390/ma16072560
Zhao Y, Qin X, Long Y, Zhou J, Jiao H. Study on the Influence of Weld Spacing on the Tensile Strength of Laser Double-Pass Reciprocating Welding of DP780/6061-T6 Dissimilar Metals. Materials. 2023; 16(7):2560. https://doi.org/10.3390/ma16072560
Chicago/Turabian StyleZhao, Yaowu, Xueqian Qin, Yuhong Long, Jia Zhou, and Hui Jiao. 2023. "Study on the Influence of Weld Spacing on the Tensile Strength of Laser Double-Pass Reciprocating Welding of DP780/6061-T6 Dissimilar Metals" Materials 16, no. 7: 2560. https://doi.org/10.3390/ma16072560
APA StyleZhao, Y., Qin, X., Long, Y., Zhou, J., & Jiao, H. (2023). Study on the Influence of Weld Spacing on the Tensile Strength of Laser Double-Pass Reciprocating Welding of DP780/6061-T6 Dissimilar Metals. Materials, 16(7), 2560. https://doi.org/10.3390/ma16072560