Material-Inherent Noise Sources in Quantum Information Architecture
Abstract
:1. Introduction
2. Noise Processes
2.1. Fundamentals of Noise
2.2. Noise Processes in Solid-State Materials
2.3. Random Telegraph Signal Analysis
3. Superconducting Qubit Quantum Processors
4. Solid-State Spin-Qubit Quantum Systems
5. Surface Trapped-Ion Quantum Systems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar] [CrossRef] [Green Version]
- Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T.P.; Gustavsson, S.; Oliver, W.D. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 2019, 6, 021318. [Google Scholar] [CrossRef] [Green Version]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinfurter, H. Quantum Communication with Entangled Photons. In Advances in Atomic, Molecular, and Optical Physics; Academic Press: Cambridge, MA, USA, 2000; Volume 42, pp. 489–533. [Google Scholar] [CrossRef]
- Schimpf, C.; Reindl, M.; Huber, D.; Lehner, B.; Silva, S.F.C.D.; Manna, S.; Vyvlecka, M.; Walther, P.; Rastelli, A. Quantum cryptography with highly entangled photons from semiconductor quantum dots. Sci. Adv. 2021, 7, eabe8905. [Google Scholar] [CrossRef]
- Feynman, R. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Mahan, G.D. Many-Particle Physics; Kluwer Academic/Plenum Publishers: London, UK, 1981. [Google Scholar]
- Parisi, G. Infinite Number of Order Parameters for Spin-Glasses. Phys. Rev. Lett. 1979, 43, 1754–1756. [Google Scholar] [CrossRef]
- Parisi, G. Order Parameter for Spin-Glasses. Phys. Rev. Lett. 1983, 50, 1946–1948. [Google Scholar] [CrossRef]
- Swan, M.; dos Santos, R.P.; Lebedev, M.; Witte, F. Quantum Computing for the Brain; World Scientific (Europe): Hackensack, NJ, USA, 2022; Available online: https://www.worldscientific.com/doi/pdf/10.1142/q0313 (accessed on 20 August 2022).
- Miranda, E.R.; Martín-Guerrero, J.D.; Venkatesh, S.; Hernani-Morales, C.; Lamata, L.; Solano, E. Quantum Brain Networks: A Perspective. Electronics 2022, 11, 1528. [Google Scholar] [CrossRef]
- Marx, V. Biology begins to tangle with quantum computing. Nat. Methods 2021, 18, 715–719. [Google Scholar] [CrossRef]
- Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferová, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya, N.P.D.; et al. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 10856–10915. [Google Scholar] [CrossRef] [Green Version]
- Paudel, H.P.; Syamlal, M.; Crawford, S.E.; Lee, Y.L.; Shugayev, R.A.; Lu, P.; Ohodnicki, P.R.; Mollot, D.; Duan, Y. Quantum Computing and Simulations for Energy Applications: Review and Perspective. ACS Eng. Au 2022, 2, 151–196. [Google Scholar] [CrossRef]
- Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Gambetta, J.M.; Chow, J.M.; Steffen, M. Building logical qubits in a superconducting quantum computing system. Npj Quantum Inf. 2017, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Häffner, H.; Roos, C.; Blatt, R. Quantum computing with trapped ions. Phys. Rep. 2008, 469, 155–203. [Google Scholar] [CrossRef] [Green Version]
- Bruzewicz, C.D.; Chiaverini, J.; McConnell, R.; Sage, J.M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 2019, 6, 021314. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.S.; Wang, H.; Deng, Y.H.; Chen, M.C.; Peng, L.C.; Luo, Y.H.; Qin, J.; Wu, D.; Ding, X.; Hu, Y.; et al. Quantum computational advantage using photons. Science 2020, 370, 1460–1463. [Google Scholar] [CrossRef]
- Zhong, H.S.; Deng, Y.H.; Qin, J.; Wang, H.; Chen, M.C.; Peng, L.C.; Luo, Y.H.; Wu, D.; Gong, S.Q.; Su, H.; et al. Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light. Phys. Rev. Lett. 2021, 127, 180502. [Google Scholar] [CrossRef]
- Madsen, L.S.; Laudenbach, F.; Askarani, M.F.; Rortais, F.; Vincent, T.; Bulmer, J.F.F.; Miatto, F.M.; Neuhaus, L.; Helt, L.G.; Collins, M.J.; et al. Quantum computational advantage with a programmable photonic processor. Nature 2022, 606, 75–81. [Google Scholar] [CrossRef]
- Loss, D.; DiVincenzo, D.P. Quantum computation with quantum dots. Phys. Rev. A 1998, 57, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Vandersypen, L.M.K.; Eriksson, M.A. Quantum computing with semiconductor spins. Phys. Today 2019, 72, 38–45. [Google Scholar] [CrossRef]
- Weber, J.R.; Koehl, W.F.; Varley, J.B.; Janotti, A.; Buckley, B.B.; de Walle, C.G.V.; Awschalom, D.D. Quantum computing with defects. Proc. Natl. Acad. Sci. USA 2010, 107, 8513–8518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pezzagna, S.; Meijer, J. Quantum computer based on color centers in diamond. Appl. Phys. Rev. 2021, 8, 011308. [Google Scholar] [CrossRef]
- Ruf, M.; Wan, N.H.; Choi, H.; Englund, D.; Hanson, R. Quantum networks based on color centers in diamond. J. Appl. Phys. 2021, 130, 070901. [Google Scholar] [CrossRef]
- Stockman, M.I. Nanoplasmonics: The physics behind the applications. Phys. Today 2011, 64, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Groß, H.; Hamm, J.M.; Tufarelli, T.; Hess, O.; Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 2018, 4, eaar4906. [Google Scholar] [CrossRef] [Green Version]
- Bello, F.; Kongsuwan, N.; Donegan, J.F.; Hess, O. Controlled Cavity-Free, Single-Photon Emission and Bipartite Entanglement of Near-Field-Excited Quantum Emitters. Nano Lett. 2020, 20, 5830–5836. [Google Scholar] [CrossRef]
- Eckstein, J.N.; Levy, J. Materials issues for quantum computation. MRS Bull. 2013, 38, 783–789. [Google Scholar] [CrossRef] [Green Version]
- de Leon, N.P.; Itoh, K.M.; Kim, D.; Mehta, K.K.; Northup, T.E.; Paik, H.; Palmer, B.S.; Samarth, N.; Sangtawesin, S.; Steuerman, D.W. Materials challenges and opportunities for quantum computing hardware. Science 2021, 372, eabb2823. [Google Scholar] [CrossRef]
- Law, S.; Kokkelmans, S. Materials for quantum technologies: Computing, information, and sensing. J. Appl. Phys. 2021, 129, 140401. [Google Scholar] [CrossRef]
- Gammaitoni, L.; Hänggi, P.; Jung, P.; Marchesoni, F. Stochastic resonance. Rev. Mod. Phys. 1998, 70, 223–287. [Google Scholar] [CrossRef]
- Dwork, C. Differential privacy. In Encyclopedia of Cryptography and Security; Springer: Berlin/Heidelberg, Germany, 2011; pp. 338–340. [Google Scholar]
- Lecuyer, M.; Atlidakis, V.; Geambasu, R.; Hsu, D.; Jana, S. Certified Robustness to Adversarial Examples with Differential Privacy. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–22 May 2019; pp. 656–672. [Google Scholar] [CrossRef] [Green Version]
- Ziel, A.V.D. Noise in Solid State Devices and Circuits; Wiley-Interscience: Hoboken, NJ, USA, 1986. [Google Scholar]
- Kampen, N.V. Stochastic Processes in Physics and Chemistry, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Jones, B.K. The scale invariance of 1/f noise. AIP Conf. Proc. 2000, 511, 115–123. [Google Scholar] [CrossRef]
- Dutta, P.; Horn, P. Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 1981, 53, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Morales, I.O.; Landa, E.; Fossion, R.; Frank, A. Scale Invariance, Self Similarity and Critical Behavior in Classical and Quantum Systems. J. Phys. Conf. Ser. 2012, 380, 012020. [Google Scholar] [CrossRef] [Green Version]
- Hooge, F.N.; Kleinpenning, T.G.M.; Vandamme, L.K.J. Experimental studies on 1/f noise. Rep. Prog. Phys. 1981, 44, 479–532. [Google Scholar] [CrossRef]
- Prati, E.; Fanciulli, M.; Calderoni, A.; Ferrari, G.; Sampietro, M. Microwave irradiation effects on random telegraph signal in a MOSFET. Phys. Lett. A 2007, 370, 491–493. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Husain, M.K.; Yoshimoto, H.; Tani, K.; Sasago, Y.; Hisamoto, D.; Fletcher, J.D.; Kataoka, M.; Tsuchiya, Y.; Saito, S. Single carrier trapping and de-trapping in scaled silicon complementary metal-oxide-semiconductor field-effect transistors at low temperatures. Semicond. Sci. Technol. 2017, 32, 075001. [Google Scholar] [CrossRef]
- Li, Z.; Sotto, M.; Liu, F.; Husain, M.K.; Yoshimoto, H.; Sasago, Y.; Hisamoto, D.; Tomita, I.; Tsuchiya, Y.; Saito, S. Random telegraph noise from resonant tunnelling at low temperatures. Sci. Rep. 2018, 8, 250. [Google Scholar] [CrossRef] [Green Version]
- Shaw, M.D.; Lutchyn, R.M.; Delsing, P.; Echternach, P.M. Kinetics of nonequilibrium quasiparticle tunneling in superconducting charge qubits. Phys. Rev. B 2008, 78, 024503. [Google Scholar] [CrossRef] [Green Version]
- Lambert, N.J.; Esmail, A.A.; Edwards, M.; Ferguson, A.J.; Schwefel, H.G.L. Random telegraph signal analysis with a recurrent neural network. Phys. Rev. E 2020, 102, 012312. [Google Scholar] [CrossRef]
- Theodorsen, A.; Garcia, O.E.; Rypdal, M. Statistical properties of a filtered Poisson process with additive random noise: Distributions, correlations and moment estimation. Phys. Scr. 2017, 92, 054002. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, K.H. Noise Sources in Bulk CMOS. 2002. Available online: https://www.semanticscholar.org/paper/Noise-Sources-in-Bulk-CMOS-Lundberg/3e8982b5908e2bcbcb241b300a861f24d2dc49dc (accessed on 20 August 2022).
- Howard, R.M. A modified random telegraph signal with a 1/f PSD. In Proceedings of the 2017 International Conference on Noise and Fluctuations (ICNF), Vilnius, Lithuania, 20–23 June 2017. [Google Scholar] [CrossRef]
- Nagumo, T.; Takeuchi, K.; Hase, T.; Hayashi, Y. Statistical characterization of trap position, energy, amplitude and time constants by RTN measurement of multiple individual traps. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010. [Google Scholar] [CrossRef]
- Thamankar, R.; Puglisi, F.; Ranjan, A.; Raghavan, N.; Shubhakar, K.; Molina, J.; Larcher, L.; Padovani, A.; Pavan, P.; O’Shea, S.; et al. Localized characterization of charge transport and random telegraph noise at the nanoscale in HfO2 films combining scanning tunneling microscopy and multi-scale simulations. J. Appl. Phys. 2017, 122, 024301. [Google Scholar] [CrossRef]
- Mishra, U.; Signh, J. Semiconductor Device Physics and Design; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Rocha, P.R.F.; Vandamme, L.K.J.; Meskers, S.C.J.; Gomes, H.L.; De Leeuw, D.M.; van de Weijer, P. Low-frequency noise as a diagnostic tool for OLED reliability. In Proceedings of the 2013 22nd International Conference on Noise and Fluctuations (ICNF), Montpellier, France, 24–28 June 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Lin, Y.F.; Xy, Y.; Lin, C.Y.; Suen, Y.W.; Yamamoto, M.; Nakaharai, S.; Ueno, K.; Tsukagoshi, K. Origin of Noise in Layered MoTe2 Transistors and its Possible Use for Environmental Sensors. Adv. Mater. 2015, 27, 6612–6619. [Google Scholar] [CrossRef] [PubMed]
- von Haartman, M.; Östling, M. Low-Frequency Noise in Advanced MOS Devices; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Song, Y.; Jeong, H.; Chung, S.; Ahn, G.H.; Kim, T.Y.; Jang, J.; Yoo, D.; Jeong, H.; Javey, A.; Lee, T. Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices. Sci. Rep. 2016, 6, 33967. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Guo, S.; Zhang, Z.; Zou, J.; Mao, D.; Huang, R. Complex Random Telegraph Noise (RTN): What Do We Understand? In Proceedings of the 2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore, 16–19 July 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Wang, R.; Sun, Z.; Zhang, Z.; Guo, S.; Huang, R. Comprehensive Study on the Anomalous Complex RTN in Advanced Multi-Fin Bulk FinFET Technology. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 17.3.1–17.3.4. [Google Scholar] [CrossRef]
- Clerk, A.A.; Devoret, M.H.; Girvin, S.M.; Marquardt, F.; Schoelkopf, R.J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 2010, 82, 1155–1208. [Google Scholar] [CrossRef]
- Lidar, D. Lecture notes on the theory of open quantum systems. arXiv 2019, arXiv:1902.00967. [Google Scholar]
- Du, Y.; Hsieh, M.H.; Liu, T.; Tao, D.; Liu, N. Quantum noise protects quantum classifiers against adversaries. Phys. Rev. Res. 2021, 3, 023153. [Google Scholar] [CrossRef]
- Smart, S.E.; Hu, Z.; Kais, S.; Mazziotti, D.A. Relaxation of stationary states on a quantum computer yields a unique spectroscopic fingerprint of the computer’s noise. Commun. Phys. 2022, 5, 28. [Google Scholar] [CrossRef]
- Kandala, A.; Temme, K.; Córcoles, A.D.; Mezzacapo, A.; Chow, J.M.; Gambetta, J.M. Error mitigation extends the computational reach of a noisy quantum processor. Nature 2006, 567, 491–495. [Google Scholar] [CrossRef] [Green Version]
- McArdle, S.; Yuan, X.; Benjamin, S. Error-Mitigated Digital Quantum Simulation. Phys. Rev. Lett. 2019, 122, 180501. [Google Scholar] [CrossRef] [Green Version]
- Bergli, J.; Galperin, Y.M.; Altshuler, B.L. Decoherence in qubits due to low-frequency noise. New J. Phys. 2009, 11, 025002. [Google Scholar] [CrossRef]
- Paladino, E.; Galperin, Y.M.; Falci, G.; Altshuler, B.L. 1/f noise: Implications for solid-state quantum information. Rev. Mod. Phys. 2014, 86, 361–418. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Wang, K.L. Correlated Random Telegraph Signal and Low-Frequency Noise in Carbon Nanotube Transistors. Nano Lett. 2008, 8, 147–151. [Google Scholar] [CrossRef]
- Martin-Martinez, J.; Diaz, J.; Rodriguez, R.; Nafria, M.; Aymerich, X.; Roca, E.; Fernandez, F.V.; Rubio, A. Characterization of random telegraph noise and its impact on reliability of SRAM sense amplifierse. In Proceedings of the 2014 5th European Workshop on CMOS Variability (VARI), Palma de Mallorca, Spain, 29 September–1 October 2014; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Kim, D.; Yang, J.W.; Barraud, S.; Brevard, L.; Ghibaudo, G.; Lee, J.W. Reduction of random telegraph noise by high-pressure deuterium annealing for p-type omega-gate nanowire FET. Nanotechnology 2020, 31, 415201. [Google Scholar] [CrossRef]
- Zhan, X.; Xi, Y.; Wang, Q.; Zhang, W.; Ji, Z.; Chen, J. Dual-Point Technique for Multi-Trap RTN Signal Extraction. IEEE Access 2020, 8, 88141–88146. [Google Scholar] [CrossRef]
- Smith, S.W. The Scientist and Engineer’s Guide to Digital Signal Processing; California Technical Pub.: San Diego, CA, USA, 1999; Available online: http://www.dspguide.com (accessed on 20 August 2022).
- Parzen, E. Modern Probability Theory and Its Applications; Wiley Series in Probability and Mathematical Statistics; Wiley: Hoboken, NJ, USA, 1960. [Google Scholar]
- Robitaille, M.; Yang, H.; Wang, L.; Kim, N.Y. Extensive Study of Multiple Deep Neural Networks for Complex Random Telegraph Signals. arXiv 2022, arXiv:2206.00086. [Google Scholar]
- Patra, B.; Incandela, R.M.; van Dijk, J.P.G.; Homulle, H.A.R.; Song, L.; Shahmohammadi, M.; Staszewski, R.B.; Vladimirescu, A.; Babaie, M.; Sebastiano, F.; et al. Cryo-CMOS Circuits and Systems for Quantum Computing Applications. IEEE J. Solid-State Circuits 2018, 53, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J.M.; Gambetta, J.M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 2017, 549, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Neill, C.; Roushan, P.; Kechedzhi, K.; Boixo, S.; Isakov, S.V.; Smelyanskiy, V.; Megrant, A.; Chiaro, B.; Dunsworth, A.; Arya, K.; et al. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 2018, 360, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Eddins, A.; Motta, M.; Gujarati, T.P.; Bravyi, S.; Mezzacapo, A.; Hadfield, C.; Sheldon, S. Doubling the Size of Quantum Simulators by Entanglement Forging. PRX Quantum 2022, 3, 010309. [Google Scholar] [CrossRef]
- Nakamura, Y.; Pashkin, Y.A.; Tsai, J.S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 1999, 398, 786–788. [Google Scholar] [CrossRef] [Green Version]
- Bouchiat, V.; Vion, D.; Joyez, P.; Esteve, D.; Devoret, M.H. Quantum Coherence with a Single Cooper Pair. Phys. Scr. 1998, T76, 165. [Google Scholar] [CrossRef] [Green Version]
- Martinis, J.M. Superconducting phase qubits. Quantum Inf. Process. 2009, 8, 81–103. [Google Scholar] [CrossRef] [Green Version]
- Orlando, T.P.; Mooij, J.E.; Tian, L.; van der Wal, C.H.; Levitov, L.S.; Lloyd, S.; Mazo, J.J. Superconducting persistent-current qubit. Phys. Rev. B 1999, 60, 15398–15413. [Google Scholar] [CrossRef] [Green Version]
- Mooij, J.E.; Orlando, T.P.; Levitov, L.; Tian, L.; van der Wal, C.H.; Lloyd, S. Josephson Persistent-Current Qubit. Science 1999, 285, 1036–1039. [Google Scholar] [CrossRef] [Green Version]
- Kjaergaard, M.; Schwartz, M.E.; Braumüller, J.; Krantz, P.; Wang, J.I.J.; Gustavsson, S.; Oliver, W.D. Superconducting Qubits: Current State of Play. Annu. Rev. Condens. Matter Phys. 2020, 11, 369–395. [Google Scholar] [CrossRef] [Green Version]
- Houck, A.A.; Koch, J.; Devoret, M.H.; Girvin, S.M.; Schoelkopf, R.J. Life after charge noise: Recent results with transmon qubits. Quantum Inf. Process 2009, 8, 105–115. [Google Scholar] [CrossRef]
- Schreier, J.A.; Houck, A.A.; Koch, J.; Schuster, D.I.; Johnson, B.R.; Chow, J.M.; Gambetta, J.M.; Majer, J.; Frunzio, L.; Devoret, M.H.; et al. Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 2008, 77, 180502. [Google Scholar] [CrossRef] [Green Version]
- Faoro, L.; Ioffe, L.B. Microscopic Origin of Low-Frequency Flux Noise in Josephson Circuits. Phys. Rev. Lett. 2008, 100, 227005. [Google Scholar] [CrossRef] [Green Version]
- Anton, S.M.; Birenbaum, J.S.; O’Kelley, S.R.; Bolkhovsky, V.; Braje, D.A.; Fitch, G.; Neeley, M.; Hilton, G.C.; Cho, H.M.; Irwin, K.D.; et al. Magnetic Flux Noise in dc SQUIDs: Temperature and Geometry Dependence. Phys. Rev. Lett. 2013, 110, 147002. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Gustavsson, S.; Kamal, A.; Birenbaum, J.; Sears, A.P.; Hover, D.; Gudmundsen, T.J.; Rosenberg, D.; Samach, G.; Weber, S.; et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 2009, 7, 12964. [Google Scholar] [CrossRef] [Green Version]
- Martinis, J.M.; Cooper, K.B.; McDermott, R.; Steffen, M.; Ansmann, M.; Osborn, K.D.; Cicak, K.; Oh, S.; Pappas, D.P.; Simmonds, R.W.; et al. Decoherence in Josephson Qubits from Dielectric Loss. Phys. Rev. Lett. 2005, 95, 210503. [Google Scholar] [CrossRef] [Green Version]
- Astafiev, O.; Pashkin, Y.A.; Nakamura, Y.; Yamamoto, T.; Tsai, J.S. Quantum Noise in the Josephson Charge Qubit. Phys. Rev. Lett. 2004, 93, 267007. [Google Scholar] [CrossRef] [Green Version]
- Oliver, W.D.; Welander, P.B. Materials in superconducting quantum bits. MRS Bull. 2013, 38, 816–825. [Google Scholar] [CrossRef] [Green Version]
- McDermott, R. Materials Origins of Decoherence in Superconducting Qubits. IEEE Trans. Appl. Supercond. 2009, 19, 2–13. [Google Scholar] [CrossRef]
- Lecocq, F.; Pop, I.M.; Peng, Z.; Matei, I.; Crozes, T.; Fournier, T.; Naud, C.; Guichard, W.; Buisson, O. Junction fabrication by shadow evaporation without a suspended bridge. Nanotechnology 2011, 22, 315302. [Google Scholar] [CrossRef] [Green Version]
- Faoro, L.; Ioffe, L.B. Quantum Two Level Systems and Kondo-Like Traps as Possible Sources of Decoherence in Superconducting Qubits. Phys. Rev. Lett. 2006, 96, 047001. [Google Scholar] [CrossRef] [Green Version]
- Simmonds, R.W.; Lang, K.M.; Hite, D.A.; Nam, S.; Pappas, D.P.; Martinis, J.M. Decoherence in Josephson Phase Qubits from Junction Resonators. Phys. Rev. Lett. 2004, 93, 077003. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.; Simon, J.; Bengtsson, A.; Kosen, S.; Krantz, P.; Lozano, D.P.; Scigliuzzo, M.; Delsing, P.; Bylander, J.; Fadavi Roudsari, A. Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits. Appl. Phys. Lett. 2021, 118, 064002. [Google Scholar] [CrossRef]
- Oh, S.; Cicak, K.; Kline, J.S.; Sillanpää, M.A.; Osborn, K.D.; Whittaker, J.D.; Simmonds, R.W.; Pappas, D.P. Elimination of two level fluctuators in superconducting quantum bits by an epitaxial tunnel barrier. Phys. Rev. B 2006, 74, 100502. [Google Scholar] [CrossRef] [Green Version]
- Schlör, S.; Lisenfeld, J.; Müller, C.; Bilmes, A.; Schneider, A.; Pappas, D.P.; Ustinov, A.V.; Weides, M. Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators. Phys. Rev. Lett. 2019, 123, 190502. [Google Scholar] [CrossRef] [Green Version]
- Aumentado, J.; Keller, M.W.; Martinis, J.M.; Devoret, M.H. Nonequilibrium Quasiparticles and 2e Periodicity in Single-Cooper-Pair Transistors. Phys. Rev. Lett. 2004, 92, 066802. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Nakamura, Y.; Pashkin, Y.A.; Astafiev, O.; Tsai, J.S. Parity effect in superconducting aluminum single electron transistors with spatial gap profile controlled by film thickness. Appl. Phys. Lett. 2006, 88, 212509. [Google Scholar] [CrossRef] [Green Version]
- Bertet, P.; Chiorescu, I.; Burkard, G.; Semba, K.; Harmans, C.J.P.M.; DiVincenzo, D.P.; Mooij, J.E. Dephasing of a Superconducting Qubit Induced by Photon Noise. Phys. Rev. Lett. 2005, 95, 257002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshihara, F.; Harrabi, K.; Niskanen, A.O.; Nakamura, Y.; Tsai, J.S. Decoherence of Flux Qubits due to 1/f Flux Noise. Phys. Rev. Lett. 2006, 97, 167001. [Google Scholar] [CrossRef] [Green Version]
- Bylander, J.; Gustavsson, S.; Yan, F.; Yoshihara, F.; Harrabi, K.; Fitch, G.; Cory, D.G.; Nakamura, Y.; Tsai, J.S.; Oliver, W.D. Non-Gaussian noise spectroscopy with a superconducting qubit sensor. Nat. Phys. 2011, 7, 565. [Google Scholar] [CrossRef]
- You, J.Q.; Hu, X.; Ashhab, S.; Nori, F. Low-decoherence flux qubit. Phys. Rev. B 2007, 75, 140515. [Google Scholar] [CrossRef] [Green Version]
- Stern, M.; Catelani, G.; Kubo, Y.; Grezes, C.; Bienfait, A.; Vion, D.; Esteve, D.; Bertet, P. Flux Qubits with Long Coherence Times for Hybrid Quantum Circuits. Phys. Rev. Lett. 2014, 113, 123601. [Google Scholar] [CrossRef] [Green Version]
- Orgiazzi, J.L.; Deng, C.; Layden, D.; Marchildon, R.; Kitapli, F.; Shen, F.; Bal, M.; Ong, F.R.; Lupascu, A. Flux qubits in a planar circuit quantum electrodynamics architecture: Quantum control and decoherence. Phys. Rev. B 2016, 93, 104518. [Google Scholar] [CrossRef] [Green Version]
- Lisenfeld, J.; Bilmes, A.; Matityahu, S.; Zanker, S.; Marthaler, M.; Schechter, M.; Schön, G.; Shnirman, A.; Weiss, G.; Ustinov, A.V. Decoherence spectroscopy with individual two-level tunneling defects. Sci. Rep. 2016, 6, 23786. [Google Scholar] [CrossRef] [Green Version]
- Sung, Y.; Beaudoin, F.; Norris, L.M.; Yan, F.; Kim, D.K.; Qiu, J.Y.; von Lüpke, U.; Yoder, J.L.; Orlando, T.P.; Gustavsson, S.; et al. Non-Gaussian noise spectroscopy with a superconducting qubit sensor. Nat. Commun. 2019, 10, 3715. [Google Scholar] [CrossRef] [Green Version]
- Buluta, I.; Ashhab, S.; Nori, F. Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 2011, 74, 104401. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, I. Engineering high-coherence superconducting qubits. Nat. Rev. Mater. 2021, 6, 875–891. [Google Scholar] [CrossRef]
- Place, A.P.M.; Rodgers, L.V.H.; Mundada, P.; Smitham, B.M.; Fitzpatrick, M.; Leng, Z.; Premkumar, A.; Bryon, J.; Vrajitoarea, A.; Sussman, S.; et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. 2021, 12, 1779. [Google Scholar] [CrossRef]
- Verjauw, J.; Acharya, R.; Van Damme, J.; Ivanov, T.; Lozano, D.P.; Mohiyaddin, F.A.; Wan, D.; Jussot, J.; Vadiraj, A.M.; Mongillo, M.; et al. Path toward manufacturable superconducting qubits with relaxation times exceeding 0.1 ms. Npj Quantum Inf. 2022, 8, 93. [Google Scholar] [CrossRef]
- Averin, D.V.; Likharev, K.K. Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions. J. Low Temp. Phys. 1986, 62, 345–373. [Google Scholar] [CrossRef]
- Fujisawa, T. Quantum Information Devices Using Semiconductor Quantum Dots. NTT Tech. Rev. 2008, 6, 1–5. Available online: https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr200801sp4.html (accessed on 20 November 2022).
- Bhandari, C.; Wysocki, A.L.; Economou, S.E.; Dev, P.; Park, K. Multiconfigurational study of the negatively charged nitrogen-vacancy center in diamond. Phys. Rev. B 2021, 103, 014115. [Google Scholar] [CrossRef]
- Struck, T.; Hollmann, A.; Schauer, F.; Fedorets, O.; Schmidbauer, A.; Sawano, K.; Riemann, H.; Abrosimov, N.V.; Cywiński, Ł.; Bougeard, D.; et al. Low-frequency spin qubit energy splitting noise in highly purified 28Si/SiGe. Npj Quantum Inf. 2020, 6, 40. [Google Scholar] [CrossRef]
- Chrostoski, P.; Sadeghpour, H.R.; Santamore, D.H. Electric Noise Spectra of a Near-Surface Nitrogen-Vacancy Center in Diamond with a Protective Layer. Phys. Rev. Appl. 2018, 10, 064056. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Payette, C.; Dovzhenko, Y.; Deelman, P.W.; Petta, J.R. Charge Relaxation in a Single-Electron Si/SiGe Double Quantum Dot. Phys. Rev. Lett. 2013, 111, 046801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowack, K.C.; Koppens, F.H.L.; Nazarov, Y.V.; Vandersypen, L.M.K. Coherent Control of a Single Electron Spin with Electric Fields. Science 2007, 318, 1430–1433. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Kamioka, J.; Otsuka, T.; Yoneda, J.; Nakajima, T.; Delbecq, M.R.; Amaha, S.; Allison, G.; Kodera, T.; Oda, S.; et al. A fault-tolerant addressable spin qubit in a natural silicon quantum dot. Sci. Adv. 2016, 2, e1600694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichol, J.M.; Orona, L.A.; Harvey, S.P.; Fallahi, S.; Gardner, G.C.; Manfra, M.J.; Yacoby, A. High-fidelity entangling gate for double-quantum-dot spin qubits. Npj Quantum Inf. 2017, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Shi, Z.; Simmons, C.B.; Ward, D.R.; Prance, J.R.; Koh, T.S.; Gamble, J.K.; Savage, D.E.; Lagally, M.G.; Friesen, M.; et al. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 2014, 511, 70–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramanian, G.; Neumann, P.; Twitchen, D.; Markham, M.; Kolesov, R.; Mizuochi, N.; Isoya, J.; Achard, J.; Beck, J.; Tissler, J.; et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 2009, 8, 383–387. [Google Scholar] [CrossRef]
- Acosta, V.M.; Bauch, E.; Ledbetter, M.P.; Waxman, A.; Bouchard, L.S.; Budker, D. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond. Phys. Rev. Lett. 2010, 104, 070801. [Google Scholar] [CrossRef] [Green Version]
- Popkin, G. Quest for qubits. Science 2016, 354, 1090–1093. [Google Scholar] [CrossRef]
- Rondin, L.; Tetienne, J.P.; Hingant, T.; Roch, J.F.; Maletinsky, P.; Jacques, V. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 2014, 77, 056503. [Google Scholar] [CrossRef] [Green Version]
- Gali, Á. Ab initio theory of the nitrogen-vacancy center in diamond. Nanophotonics 2019, 8, 1907–1943. [Google Scholar] [CrossRef]
- Koppens, F.H.L.; Buizert, C.; Tielrooij, K.J.; Vink, I.T.; Nowack, K.C.; Meunier, T.; Kouwenhoven, L.P.; Vandersypen, L.M.K. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 2006, 442, 766–771. [Google Scholar] [CrossRef] [Green Version]
- Itoh, K.M.; Watanabe, H. Isotope engineering of silicon and diamond for quantum computing and sensing applications. MRS Commun. 2014, 4, 143–157. [Google Scholar] [CrossRef]
- Steger, M.; Saeedi, K.; Thewalt, M.L.W.; Morton, J.J.L.; Riemann, H.; Abrosimov, N.V.; Becker, P.; Pohl, H.J. Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum”. Science 2012, 336, 1280–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeedi, K.; Simmons, S.; Salvail, J.Z.; Dluhy, P.; Riemann, H.; Abrosimov, N.V.; Becker, P.; Pohl, H.J.; Morton, J.J.L.; Thewalt, M.L.W. Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28. Science 2013, 342, 830–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watzinger, H.; Kukučka, J.; Vukušić, L.; Gao, F.; Wang, T.; Schäffler, F.; Zhang, J.J.; Katsaros, G. A germanium hole spin qubit. Nat. Commun. 2018, 9, 3902. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Hudson, F.E.; Dzurak, A.S.; Hamilton, A.R. Pauli Spin Blockade of Heavy Holes in a Silicon Double Quantum Dot. Nano Lett. 2015, 15, 7314–7318. [Google Scholar] [CrossRef] [Green Version]
- Laird, E.A.; Pei, F.; Kouwenhoven, L.P. A valley–spin qubit in a carbon nanotube. Nat. Nanotechnol. 2013, 8, 565–568. [Google Scholar] [CrossRef] [Green Version]
- Baydin, A.; Tay, F.; Fan, J.; Manjappa, M.; Gao, W.; Kono, J. Carbon Nanotube Devices for Quantum Technology. Materials 2022, 15, 1535. [Google Scholar] [CrossRef]
- Trauzettel, B.; Bulaev, D.V.; Loss, D.; Burkard, G. Spin qubits in graphene quantum dots. Nat. Phys. 2007, 3, 192–196. [Google Scholar] [CrossRef] [Green Version]
- Gächter, L.M.; Garreis, R.; Gerber, J.D.; Ruckriegel, M.J.; Tong, C.; Kratochwil, B.; de Vries, F.K.; Kurzmann, A.; Watanabe, K.; Taniguchi, T.; et al. Single-Shot Spin Readout in Graphene Quantum Dots. PRX Quantum 2022, 3, 020343. [Google Scholar] [CrossRef]
- Yan, F.F.; Yi, A.L.; Wang, J.F.; Li, Q.; Yu, P.; Zhang, J.X.; Gali, A.; Wang, Y.; Xu, J.S.; Ou, X.; et al. Room-temperature coherent control of implanted defect spins in silicon carbide. Npj Quantum Inf. 2020, 6, 38. [Google Scholar] [CrossRef]
- Yoneda, J.; Takeda, K.; Otsuka, T.; Nakajima, T.; Delbecq, M.R.; Allison, G.; Honda, T.; Kodera, T.; Oda, S.; Hoshi, Y.; et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 2018, 13, 102–106. [Google Scholar] [CrossRef]
- Reilly, D.J.; Taylor, J.M.; Laird, E.A.; Petta, J.R.; Marcus, C.M.; Hanson, M.P.; Gossard, A.C. Measurement of Temporal Correlations of the Overhauser Field in a Double Quantum Dot. Phys. Rev. Lett. 2008, 101, 236803. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, F.K.; Martins, F.; Cywiński, L.; Rudner, M.S.; Nissen, P.D.; Fallahi, S.; Gardner, G.C.; Manfra, M.J.; Marcus, C.M.; Kuemmeth, F. Spectrum of the Nuclear Environment for GaAs Spin Qubits. Phys. Rev. Lett. 2017, 118, 177702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrostoski, P.; Barrios, B.; Santamore, D. Magnetic field noise analyses generated by the interactions between a nitrogen vacancy center diamond and surface and bulk impurities. Phys. B Condens. Matter 2021, 605, 412767. [Google Scholar] [CrossRef]
- Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 1990, 62, 531–540. [Google Scholar] [CrossRef]
- Blatt, R.; Wineland, D. Entangled states of trapped atomic ions. Nature 2008, 453, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Itano, W.M.; Brewer, L.R.; Larson, D.J.; Wineland, D.J. Perpendicular laser cooling of a rotating ion plasma in a Penning trap. Phys. Rev. A 1988, 38, 5698–5706. [Google Scholar] [CrossRef]
- Noel, C.; Berlin-Udi, M.; Matthiesen, C.; Yu, J.; Zhou, Y.; Lordi, V.; Häffner, H. Electric-field noise from thermally activated fluctuators in a surface ion trap. Phys. Rev. A 2019, 99, 063427. [Google Scholar] [CrossRef] [Green Version]
- Stick, D.; Hensinger, W.K.; Olmschenk, S.; Madsen, M.J.; Schwab, K.; Monroe, C. Ion trap in a semiconductor chip. Nat. Phys. 2006, 2, 36–39. [Google Scholar] [CrossRef]
- Seidelin, S.; Chiaverini, J.; Reichle, R.; Bollinger, J.J.; Leibfried, D.; Britton, J.; Wesenberg, J.H.; Blakestad, R.B.; Epstein, R.J.; Hume, D.B.; et al. Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing. Phys. Rev. Lett. 2006, 96, 253003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivory, M.; Setzer, W.J.; Karl, N.; McGuinness, H.; DeRose, C.; Blain, M.; Stick, D.; Gehl, M.; Parazzoli, L.P. Integrated Optical Addressing of a Trapped Ytterbium Ion. Phys. Rev. X 2021, 11, 041033. [Google Scholar] [CrossRef]
- Wang, P.; Luan, C.Y.; Qiao, M.; Um, M.; Zhang, J.; Wang, Y.; Yuan, X.; Gu, M.; Zhang, J.; Kim, K. Single ion qubit with estimated coherence time exceeding one hour. Nat. Commun. 2021, 12, 233. [Google Scholar] [CrossRef]
- Bermudez, A.; Xu, X.; Nigmatullin, R.; O’Gorman, J.; Negnevitsky, V.; Schindler, P.; Monz, T.; Poschinger, U.G.; Hempel, C.; Home, J.; et al. Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation. Phys. Rev. X 2017, 7, 041061. [Google Scholar] [CrossRef] [Green Version]
- Gaebler, J.P.; Tan, T.R.; Lin, Y.; Wan, Y.; Bowler, R.; Keith, A.C.; Glancy, S.; Coakley, K.; Knill, E.; Leibfried, D.; et al. High-Fidelity Universal Gate Set for 9Be+ Ion Qubits. Phys. Rev. Lett. 2016, 117, 060505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harty, T.P.; Allcock, D.T.C.; Ballance, C.J.; Guidoni, L.; Janacek, H.A.; Linke, N.M.; Stacey, D.N.; Lucas, D.M. High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. Phys. Rev. Lett. 2014, 113, 220501. [Google Scholar] [CrossRef] [Green Version]
- Ballance, C.J.; Harty, T.P.; Linke, N.M.; Sepiol, M.A.; Lucas, D.M. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. Phys. Rev. Lett. 2016, 117, 060504. [Google Scholar] [CrossRef] [Green Version]
- Brownnutt, M.; Kumph, M.; Rabl, P.; Blatt, R. Ion-trap measurements of electric-field noise near surfaces. Rev. Mod. Phys. 2015, 87, 1419–1482. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.R.; Chiaverini, J.; Sage, J.M.; Häffner, H. Materials challenges for trapped-ion quantum computers. Nat. Rev. Mater. 2021, 6, 892–905. [Google Scholar] [CrossRef]
- Hite, D.A.; Colombe, Y.; Wilson, A.C.; Allcock, D.T.C.; Leibfried, D.; Wineland, D.J.; Pappas, D.P. Surface science for improved ion traps. MRS Bull. 2013, 38, 826–833. [Google Scholar] [CrossRef]
- An, D.; Matthiesen, C.; Urban, E.; Häffner, H. Distance scaling and polarization of electric-field noise in a surface ion trap. Phys. Rev. A 2019, 100, 063405. [Google Scholar] [CrossRef] [Green Version]
- Sedlacek, J.A.; Greene, A.; Stuart, J.; McConnell, R.; Bruzewicz, C.D.; Sage, J.M.; Chiaverini, J. Distance scaling of electric-field noise in a surface-electrode ion trap. Phys. Rev. A 2018, 97, 020302. [Google Scholar] [CrossRef] [Green Version]
- Turchette, Q.A.; King, B.E.K.; Leibfried, D.; Meekhof, D.M.; Myatt, C.J.; Rowe, M.A.; Sackett, C.A.; Wood, C.S.; Itano, W.M.; Wineland, D.J. Heating of trapped ions from the quantum ground state. Phys. Rev. A 2000, 61, 063418. [Google Scholar] [CrossRef] [Green Version]
- Hite, D.A.; Colombe, Y.; Wilson, A.C.; Brown, K.R.; Warring, U.; Jördens, R.; Jost, J.D.; McKay, K.S.; Pappas, D.P.; Leibfried, D.; et al. 100-Fold Reduction of Electric-Field Noise in an Ion Trap Cleaned with In Situ Argon-Ion-Beam Bombardment. Phys. Rev. Lett. 2012, 109, 103001. [Google Scholar] [CrossRef] [Green Version]
- Holz, P.C.; Lakhmanskiy, K.; Rathje, D.; Schindler, P.; Colombe, Y.; Blatt, R. Electric-field noise in a high-temperature superconducting surface ion trap. Phys. Rev. B 2021, 104, 064513. [Google Scholar] [CrossRef]
- Stark, J.; Warnecke, C.; Bogen, S.; Chen, S.; Dijck, E.A.; Kühn, S.; Rosner, M.K.; Graf, A.; Nauta, J.; Oelmann, J.H.; et al. An ultralow-noise superconducting radio-frequency ion trap for frequency metrology with highly charged ions. Rev. Sci. Instruments 2021, 92, 083203. [Google Scholar] [CrossRef]
- Somoroff, A.; Ficheux, Q.; Mencia, R.A.; Xiong, H.; Kuzmin, R.; Manucharyan, V.E. Millisecond coherence in a superconducting qubit. arXiv 2021, arXiv:2103.08578. [Google Scholar]
- Xu, Y.; Chu, J.; Yuan, J.; Qiu, J.; Zhou, Y.; Zhang, L.; Tan, X.; Yu, Y.; Liu, S.; Li, J.; et al. High-Fidelity, High-Scalability Two-Qubit Gate Scheme for Superconducting Qubits. Phys. Rev. Lett. 2020, 125, 240503. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Rossi, A.; Ruskov, R.; Lai, N.S.; Mohiyaddin, F.A.; Lee, S.; Tahan, C.; Klimeck, G.; Morello, A.; Dzurak, A.S. Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting. Nat. Commun. 2013, 4, 2069. [Google Scholar] [CrossRef] [Green Version]
- Lawrie, W.I.L.; Hendrickx, N.W.; van Riggelen, F.; Russ, M.; Petit, L.; Sammak, A.; Scappucci, G.; Veldhorst, M. Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots. Nano Lett. 2020, 20, 7237–7242. [Google Scholar] [CrossRef]
- Veldhorst, M.; Hwang, J.C.C.; Yang, C.H.; Leenstra, A.W.; de Ronde, B.; Dehollain, J.P.; Muhonen, J.T.; Hudson, F.E.; Itoh, K.M.; Morello, A.; et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 2014, 9, 981–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Yang, C.H.; Chan, K.W.; Tanttu, T.; Hensen, B.; Leon, R.C.C.; Fogarty, M.A.; Hwang, J.C.C.; Hudson, F.E.; Itoh, K.M.; et al. Fidelity benchmarks for two-qubit gates in silicon. Nat. Nanotechnol. 2019, 569, 532–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar-Gill, N.; Pham, L.; Jarmola, A.; Budker, D.; Walsworth, R. Solid-state electronic spin coherence time approaching one second. Nat. Commun. 2013, 4, 1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astner, T.; Gugler, J.; Angerer, A.; Wald, S.; Putz, S.; Mauser, N.J.; Trupke, M.; Sumiya, H.; Onoda, S.; Isoya, J.; et al. Solid-state electron spin lifetime limited by phononic vacuum modes. Nat. Mater. 2018, 17, 313–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, B.D.; Stimpson, G.A.; March, J.E.; Lekhai, Y.N.D.; Stephen, C.J.; Green, B.L.; Frangeskou, A.C.; Giné, L.; Mandal, S.; William, O.A.; et al. Long spin coherence times of nitrogen vacancy centers in milled nanodiamonds. arXiv 2022, arXiv:2112.01899. [Google Scholar] [CrossRef]
- Rong, X.; Geng, J.; Shi, F.; Liu, Y.; Xu, K.; Ma, W.; Kong, F.; Jiang, Z.; Wu, Y.; Du, J. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions. Nat. Commun. 2015, 6, 8748. [Google Scholar] [CrossRef] [Green Version]
- Talukdar, I.; Gorman, D.J.; Daniilidis, N.; Schindler, P.; Ebadi, S.; Kaufmann, H.; Zhang, T.; Häffner, H. Implications of surface noise for the motional coherence of trapped ions. Phys. Rev. A 2016, 93, 043415. [Google Scholar] [CrossRef] [Green Version]
Frequency | Low | Middle | High |
(MHz) | (MHz GHz) | (GHz) | |
Dominant noise types | 1/f noise | Shot noise | Quantum noise |
Random telegraph noise | Thermal noise | ||
Power spectral density trend | flat | ||
no f-dependence | |||
Origins of noise | Not specified, natural | Discretized carrier transport | Quantum fluctuations |
Interface cleanness | Agitation by thermal energy | ||
Nuclear and charge fluctuations |
Superconducting (SC) | Quantum Dot (QD) | Color Center | Surface Trapped Ions | |
---|---|---|---|---|
Qubit system | Energy states in Josephson Junctions | Spin states of charge carriers | Spin or energy states of charge carriers | Energy states of atomic ions |
Conventional material | Al/AlO | GaAs/AlGaAs, Si | NV, SiV in diamonds | Al-Cu electrodes |
Noise sources | Two-level fluctuators Quasiparticle tunneling Resistive loss at the interface | Nuclear spins near QD Charge traps at the interface | Undesirable defects Dangling bonds Rough surface | Electric-field noise |
Remedy | Epitaxy growth Oxygen doping Film-thickness engineering | Highly purified Si Holes instead of electrons | Improve surface treatments | Ar treatment Superconductors |
New material | Nb, Ta | Si/SiGe, Si-MOS, Ge/SiGe | SiC, nanodiamond | Nb, YBCO |
0.36 ± 0.01 ms 1 1.20 ± 0.03 ms 2 | 2.6 s 4 32 ms 5 | >10 s 9 8 h 10 | 1 ms 13 ∞ 14 | |
0.38 ± 0.01 ms 1 1.48 ± 0.13 ms 2 | 28 ms 6 99 ± 4 s 7 | 580 (210) ms 9 462 s 11 | 50 s 14 | |
0.99991(1) 2 | 0.9959 6 0.99926 ± 0.00002 7 | 0.999952 (6) 12 | 0.999999 14 | |
0.9948 ± 0.0004 3 | 0.947 ± 0.008 8 | 0.9920 (1) 12 | 0.999 (1) 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Kim, N.Y. Material-Inherent Noise Sources in Quantum Information Architecture. Materials 2023, 16, 2561. https://doi.org/10.3390/ma16072561
Yang H, Kim NY. Material-Inherent Noise Sources in Quantum Information Architecture. Materials. 2023; 16(7):2561. https://doi.org/10.3390/ma16072561
Chicago/Turabian StyleYang, HeeBong, and Na Young Kim. 2023. "Material-Inherent Noise Sources in Quantum Information Architecture" Materials 16, no. 7: 2561. https://doi.org/10.3390/ma16072561
APA StyleYang, H., & Kim, N. Y. (2023). Material-Inherent Noise Sources in Quantum Information Architecture. Materials, 16(7), 2561. https://doi.org/10.3390/ma16072561