Laser Emission Spectroscopy of Graphene Oxide Deposited on 316 Steel and Ti6Al4V Titanium Alloy Suitable for Orthopedics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural Analysis
3.2. Raman Surface Analysis
3.3. LIBS Analysis
4. Discussion
5. Conclusions
- I layer—C dominant
- II Layer—transitional
- III Layer—dominance of the elements of the base material.
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maurya, G.S.; Marín-Roldán, A.; Veis, P.; Kumar Pathak, A.; Sen, P. A review of the LIBS analysis for the plasma-facing components diagnostics. J. Nucl. Mater. 2020, 541, 152417. [Google Scholar] [CrossRef]
- Wainner, R.T.; Harmon, R.S.; Miziolek, A.W.; McNesby, K.L.; French, P.D. Analysis of environmental lead contamination: Comparison of LIBS field and laboratory instruments. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 777–793. [Google Scholar] [CrossRef]
- Martinez-Lopez, C.; Ovide, O.; Corzo, R.; Andrews, Z.; Almirall, J.R.; Trejos, T. Homogeneity assessment of the elemental composition of windshield glass by µ-XRF, LIBS and LA-ICP-MS analysis. Forensic Chem. 2022, 27, 100384. [Google Scholar] [CrossRef]
- Miziolek, A.; Palleschi, V.; Schechter, I. Laser-Induced Breakdown Spectroscopy; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Galbács, G. A critical review of recent progress in analytical laser-induced breakdown spectroscopy. Anal. Bioanal. Chem. 2015, 407, 7537–7562. [Google Scholar] [CrossRef] [PubMed]
- Radziemski, R.; Cremers, D. A brief history of laser-induced breakdown spectroscopy: From the concept of atoms to LIBS 2012. Spectrochim. Acta Part B 2013, 87, 3–10. [Google Scholar] [CrossRef]
- Kongbonga, Y.G.M.; Ghalila, H.; Onana, M.B.; Lakhdar, Z.B. Classification of vegetable oils based on their concentration of saturated fatty acids using laser induced breakdown spectroscopy (LIBS). Food Chem. 2014, 147, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Zhongqi, H.; Zhiwei, D.; Li, L.; Jiulin, S.; Xingdao, H. Spatial confinement effects of laser-induced breakdown spectroscopy at reduced air pressures. Front. Optoelectron. 2022, 15, 17. [Google Scholar]
- Kaiser, J.; Novotný, K.; Martin, M.Z.; Hrdlicka, A.; Malina, R.; Hartl, M.; Adam, V.; Kizeke, R. Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications. Surf. Sci. Rep. 2012, 67, 233–243. [Google Scholar] [CrossRef]
- Mohaidat, Q.I. Laser-Induced Breakdown Spectroscopy (LIBS): An Innovative Tool for Studying Bacteria. Ph.D. Thesis, Wayne State University, Detroit, Michigan, 2011. [Google Scholar]
- Cantwell, C.; Christian, G.; Jinesh, J.; Dustin, M. Development of a laser induced breakdown spectroscopy sensor to assess groundwater quality impacts resulting from geologic carbon sequestration. Proc. SPIE-Int. Soc. Opt. Eng. 2015, 77, 9467. [Google Scholar]
- Song, J.; Tian, Y.; Lu, Y.; Li, Y.; Zheng, R.E. Comparative investigation of underwater-LIBS using 532 and 1064 nm lasers. Spectrosc. Spectr. Anal. 2014, 34, 3104–31081. [Google Scholar]
- Lebedev, V.F.; Rabchinskii, M.K.; Kozlyakov, M.S.; Stepanov, D.N.; Shvidchenko, A.V.; Nikonorov, V.N.; Vul, A.Y. Laser-induced breakdown spectroscopy: An advanced method for analysis of nanocarbon materials chemical composition. J. Anal. At. Spectrom. 2018, 33, 240–250. [Google Scholar] [CrossRef]
- Nasiłowska, B.; Bogdanowicz, Z.; Kłysz, S.; Baran, M.; Lisiecki, J.; Monka, G.; Bartosewicz, B.; Komorek, Z.; Bombalska, A.; Mierczyk, Z. Fatigue Life of Austenitic Steel 304 Bolts Strengthened by Surface Treatment with Graphene Oxide Layer and Surface Shot Peening. Materials 2021, 14, 6674. [Google Scholar] [CrossRef] [PubMed]
- Nasiłowska, B.; Bogdanowicz, Z.; Hińcza, K.; Mierczyk, Z.; Góźdź, S.; Djas, M.; Kowiorski, K.; Bombalska, A.; Kowalik, A. Graphene Oxide Aerosol Deposition and its Influence on Cancer Cells. Preliminary Results. Materials 2020, 13, 4464. [Google Scholar] [CrossRef] [PubMed]
- Nasiłowska, B.; Skrzeczanowski, W.; Bogdanowicz, Z.; Woluntarski, M.; Lipińska, L. The analysis of LIBS spectra of graphene and C/Herex/C composite. Inżynieria Mater. 2018, 5, 166–171. [Google Scholar] [CrossRef]
- Titanium/Aluminium/Vanadium—Online Catalogue Source—Supplier of Research Materials in Small Quantities—Goodfellow. Available online: www.goodfellow.com (accessed on 10 October 2022).
- Available online: http://www.goodfellow.com/E/Stainless-Steel-AISI-316.html (accessed on 10 October 2022).
- Alsaddah, M.; Khan, A.; Groom, K.; Mumtaz, K. Use of 450–808 nm diode lasers for efficient energy absorption during powder bed fusion of Ti6Al4V. Int. J. Adv. Manuf. Technol. 2021, 113, 2461–2480. [Google Scholar] [CrossRef]
- Iffländer, R. Gaussian Optics. In Solid-State Lasers for Materials Processing: Fundamental Relations and Technical Realizations. Springer Series in OPTICAL SCIENCES; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-3-642-08630-4. [Google Scholar] [CrossRef]
- Tavassoli, S.H.; Khalaji, M. Laser ablation of preheated copper samples. J. Appl. Phys. 2008, 103, 083118. [Google Scholar] [CrossRef]
- Tavassoli, S.H.; Gragossian, A. Effect of sample temperature on laser-induced breakdown spectroscopy. Opt. Laser Technol. 2009, 41, 481–485. [Google Scholar] [CrossRef]
- Cuo, K.; Chen, A.; Xu, W.; Zhang, D.; Jin, M. Effect of sample temperature on time-resolved laser-induced breakdown spectroscopy. AIP Adv. 2019, 9, 065214. [Google Scholar] [CrossRef] [Green Version]
- Kalela, N.; Darpe, A.; Bijwe, J. Low pressure plasma induced surface changes of some stainless steels. Surf. Coat. Technol. 2021, 425, 127700. [Google Scholar] [CrossRef]
- Sönmez, T.; Fazeli Jadidi, M.; Kazmanli, K.; Birer, Ö.; Ürgen, M. Role of different plasma gases on the surface chemistry and wettability of RF plasma treated stainless steel. Vacuum 2016, 129, 63–73. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasiłowska, B.; Skrzeczanowski, W.; Bombalska, A.; Bogdanowicz, Z. Laser Emission Spectroscopy of Graphene Oxide Deposited on 316 Steel and Ti6Al4V Titanium Alloy Suitable for Orthopedics. Materials 2023, 16, 2574. https://doi.org/10.3390/ma16072574
Nasiłowska B, Skrzeczanowski W, Bombalska A, Bogdanowicz Z. Laser Emission Spectroscopy of Graphene Oxide Deposited on 316 Steel and Ti6Al4V Titanium Alloy Suitable for Orthopedics. Materials. 2023; 16(7):2574. https://doi.org/10.3390/ma16072574
Chicago/Turabian StyleNasiłowska, Barbara, Wojciech Skrzeczanowski, Aneta Bombalska, and Zdzisław Bogdanowicz. 2023. "Laser Emission Spectroscopy of Graphene Oxide Deposited on 316 Steel and Ti6Al4V Titanium Alloy Suitable for Orthopedics" Materials 16, no. 7: 2574. https://doi.org/10.3390/ma16072574
APA StyleNasiłowska, B., Skrzeczanowski, W., Bombalska, A., & Bogdanowicz, Z. (2023). Laser Emission Spectroscopy of Graphene Oxide Deposited on 316 Steel and Ti6Al4V Titanium Alloy Suitable for Orthopedics. Materials, 16(7), 2574. https://doi.org/10.3390/ma16072574