The Heteroepitaxy of Thick β-Ga2O3 Film on Sapphire Substrate with a β-(AlxGa1−x)2O3 Intermediate Buffer Layer
Abstract
:1. Introduction
2. Experiments
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pearton, S.J.; Ren, F.; Tadjer, M.; Kim, J. Perspective: Ga2O3 for ultra-high-power rectifiers and MOSFETS. J. Appl. Phys. 2018, 124, 220901. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; He, Q.; Jian, G.; Long, S.; Pang, T.; Liu, M. An Overview of the Ultrawide Bandgap Ga2O3 Semiconductor-Based Schottky Barrier Diode for Power Electronics Application. Nanoscale Res. Lett. 2018, 13, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, H.; Nomura, K.; Goto, K.; Sasaki, K.; Kawara, K.; Thieu, Q.T.; Togashi, R.; Kumagai, Y.; Higashiwaki, M.; Kuramata, A.; et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl. Phys. Express 2015, 8, 015503. [Google Scholar] [CrossRef]
- Mazzolini, P.; Falkenstein, A.; Wouters, C.; Schewski, R.; Markurt, T.; Galazka, Z.; Martin, M.; Albrecht, M.; Bierwagen, O. Substrate-orientation dependence of β-Ga2O3 (100), (010), (001), and (-201) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy. APL Mater. 2020, 8, 011107. [Google Scholar] [CrossRef] [Green Version]
- Oshima, T.; Okuno, T.; Fujita, S. Ga2O3 Thin Film Growth on c-Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors. Jpn. J. Appl. Phys. 2007, 46, 7217–7220. [Google Scholar] [CrossRef]
- Li, Y.W.; Xiu, X.Q.; Xu, W.L.; Zhang, L.Y.; Xie, Z.L.; Tao, T.; Chen, P.; Liu, B.; Zhang, R.; Zheng, Y.D. Microstructural analysis of heteroepitaxial β-Ga2O3 films grown on (0001) sapphire by halide vapor phase epitaxy. J. Phys. D Appl. Phys. 2021, 54, 014003. [Google Scholar] [CrossRef]
- Gottschalch, V.; Mergenthaler, K.; Wagner, G.; Bauer, J.; Paetzelt, H.; Sturm, C.; Teschner, U. Growth of β-Ga2O3 on Al2O3 and GaAs using metal-rganic vapor-hase epitaxy. Phys. Status Solidi A 2009, 206, 243–249. [Google Scholar] [CrossRef]
- Zhang, F.; Saito, K.; Tanaka, T.; Nishio, M.; Guo, Q. Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition. J. Cryst. Growth 2014, 387, 96–100. [Google Scholar] [CrossRef]
- Ahmadi, E.; Koksaldi, O.; Kaun, S.; Oshima, Y.; Short, D.; Mishra, U.; Speck, J. Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Express 2017, 10, 041102. [Google Scholar] [CrossRef]
- Oshima, T.; Oshima, Y. Selective area growth of β-Ga2O3 by HCl-based halide vapor phase epitaxy. Appl. Phys. Express 2022, 15, 075503. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H.; Zhang, Z.; Zhang, Q.; Hu, X.; Liang, H. Heteroepitaxial β-Ga2O3 thick films on sapphire substrate by carbothermal reduction rapid growth method. Semicond. Sci. Technol. 2022, 37, 085014. [Google Scholar] [CrossRef]
- Ranga, P.; Bhattacharyya, A.; Chmielewski, A.; Roy, S.; Sun, R.; Scarpulla, M.; Alem, N.; Krishnamoorthy, S. Growth and characterization of metalorganic vapor-phase epitaxy-grown β-(AlxGa1−x)2O3/β-Ga2O3 heterostructure channels. Appl. Phys. Express 2021, 14, 025501. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, H.; Xia, X.; Tao, P.; Shen, R.; Liu, Y.; Feng, Y.; Zheng, Y.; Li, X.; Du, G. The lattice distortion of β-Ga2O3 film grown on c-plane sapphire. J. Mater. Sci. Mater. Electron. 2015, 26, 3231–3235. [Google Scholar] [CrossRef]
- Rafique, S.; Han, L.; Neal, A.; Mou, S.; Boeckl, J.; Zhao, H. Towards High-Mobility Heteroepitaxial β-Ga2O3 on Sapphire − Dependence on The Substrate Off-Axis Angle, Physica status solidi. A, Applications and materials science. Phys. Status Solidi A 2018, 215, 1700467. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, C.; Xu, Y.; Li, Z.; Chen, D.; Zhu, W.; Feng, Q.; Xu, S.; Zhang, J.; Hao, Y. Heteroepitaxial growth of β-Ga2O3 thin films on c-plane sapphire substrates with β-(AlxGa1−x)2O3 intermediate buffer layer by mist-CVD method. Mater. Today Commun. 2021, 29, 102766. [Google Scholar] [CrossRef]
- Kaun, S.; Feng, W.; Speck, J. β-(AlxGa1−x)2O3/ Ga2O3 (010) heterostructures grown on β-Ga2O3 (010) substrates by plasma-assisted molecular beam epitaxy. J. Vac. Sci. Technol. A 2015, 33, 041508. [Google Scholar] [CrossRef]
- Hu, Z.; Feng, Q.; Zhang, J.; Li, F.; Li, X.; Feng, Z.; Zhang, C.; Hao, Y. Microstructures, Optical properties of (AlxGa1−x)2O3 on sapphire. Superlattices Microstruct. 2018, 114, 82–88. [Google Scholar] [CrossRef]
- Wouters, C.; Schewski, R.; Albrecht, M. Comment on Phase transformation in MOCVD growth of (AlxGa1−x)2O3 thin films. APL Mater. 2020, 8, 089101. [Google Scholar] [CrossRef]
- Hassa, A.; Wouters, C.; Kneiß, M.; Splith, D.; Sturm, C.; Wenckstern, H.; Albrecht, M.; Lorenz, M.; Grundmann, M. Control of phase formation of (AlxGa1−x)2O3 thin films on c-plane Al2O3. J. Phys. D Appl. Phys. 2020, 53, 485105. [Google Scholar] [CrossRef]
- Bhuiyan, A.; Feng, Z.; Johnson, J.; Chen, Z.; Huang, H.-L.; Hwang, J.; Zhao, H. MOCVD epitaxy of β-(AlxGa1−x)2O3 thin films on (010) Ga2O3 substrates and N-type doping. Appl. Phys. Lett. 2019, 115, 120602. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; Hickey, L.; Sager, D.; Wilkinson, J. Gallium-diffused waveguides in sapphire. J. Eur. Ceram. Soc. 2006, 26, 2695–2698. [Google Scholar] [CrossRef]
- Kraner, C.; Jenderka, M.; Lenzner, J.; Lorenz, M.; Wenckstern, H.; Schmidt-Grund, R.; Grundmann, M. Lattice parameters and Raman-active phonon modes of β-(AlxGa1−x)2O3. J. Appl. Phys. 2015, 117, 125703. [Google Scholar] [CrossRef] [Green Version]
- Oshima, Y.; Ahmadi, E.; Badescu, S.; Wu, F.; Speck, J. Composition determination of β-(AlxGa1−x)2O3layers coherently grown on (010) β-Ga2O3 substrates by high-resolution X-ray diffraction. Appl. Phys. Express 2016, 9, 061102. [Google Scholar] [CrossRef]
- Zhang, F.; Saito, K.; Tanaka, T.; Nishio, M.; Arita, M.; Guo, Q. Wide bandgap engineering of β-(AlxGa1−x)2O3 films. Appl. Phys. Lett. 2014, 105, 162107. [Google Scholar]
- Fares, C.; Ren, F.; Lambers, E.; Hays, D.C.; Gila, B.P.; Pearton, S.J. Band alignment of atomic layer deposited SiO2 on (010) (Al0.14 Ga0.86)2O 3. J. Vac. Sci. Technol. B 2018, 36, 061207. [Google Scholar] [CrossRef]
- Tanner, C.; Perng, Y.; Frewin, C.; Saddow, S.; Chang, J. Electrical performance of Al2O3 gate dielectric films deposited by atomic layer deposition on 4H-SiC. Appl. Phys. Lett. 2007, 91, 203510. [Google Scholar] [CrossRef]
- Feng, Z.; Feng, Q.; Zhang, J.; Li, X.; Li, F.; Huang, L.; Chen, H.; Lu, H.; Hao, Y. Band alignment of SiO2/(AlxGa1−x)2O3 (0 ≤ x ≤ 0.49) determined by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2018, 434, 440–444. [Google Scholar] [CrossRef]
- Hori, Y.; Mizue, C.; Hashizume, T. Process Conditions for Improvement of Electrical Properties of Al2O3/n-GaN Structures Prepared by Atomic Layer Deposition. Jpn. J. Appl. Phys. 2010, 49, 080201. [Google Scholar] [CrossRef]
- Nichols, M.; Antonelli, G.; Li, W.; Pei, D.; Lin, Q.; Banna, S.; Nishi, Y.; Shohet, J. Measurement of bandgap energies in low-k organosilicates. J. Appl. Phys. 2014, 115, 094105. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wu, Y.; Feng, B.; Li, Y.; Liu, T.; Feng, J.; Chen, X.; Huang, R.; Xu, L.; Li, Z.; et al. Bandgap Tailoring of Monoclinic Single-Phase β-(AlxGa1−x)2O3 (0 ≤ x ≤ 0.65) Thin Film by Annealing β-Ga2O3/Al2O3 Heterojunction at High Temperatures. Phys. Status Solidi A 2021, 218, 2000785. [Google Scholar] [CrossRef]
Sample | (-201) | (-402) | (-603) |
---|---|---|---|
β-Ga2O3 (reference) | 18.95 | 38.404 | 59.19 |
(AlxGa1−x)2O3 | 19.3 | 39.12 | 60.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhang, H.; Zhang, S.; Wang, Z.; Liu, L.; Zhang, Q.; Hu, X.; Liang, H. The Heteroepitaxy of Thick β-Ga2O3 Film on Sapphire Substrate with a β-(AlxGa1−x)2O3 Intermediate Buffer Layer. Materials 2023, 16, 2775. https://doi.org/10.3390/ma16072775
Zhang W, Zhang H, Zhang S, Wang Z, Liu L, Zhang Q, Hu X, Liang H. The Heteroepitaxy of Thick β-Ga2O3 Film on Sapphire Substrate with a β-(AlxGa1−x)2O3 Intermediate Buffer Layer. Materials. 2023; 16(7):2775. https://doi.org/10.3390/ma16072775
Chicago/Turabian StyleZhang, Wenhui, Hezhi Zhang, Song Zhang, Zishi Wang, Litao Liu, Qi Zhang, Xibing Hu, and Hongwei Liang. 2023. "The Heteroepitaxy of Thick β-Ga2O3 Film on Sapphire Substrate with a β-(AlxGa1−x)2O3 Intermediate Buffer Layer" Materials 16, no. 7: 2775. https://doi.org/10.3390/ma16072775
APA StyleZhang, W., Zhang, H., Zhang, S., Wang, Z., Liu, L., Zhang, Q., Hu, X., & Liang, H. (2023). The Heteroepitaxy of Thick β-Ga2O3 Film on Sapphire Substrate with a β-(AlxGa1−x)2O3 Intermediate Buffer Layer. Materials, 16(7), 2775. https://doi.org/10.3390/ma16072775