Effect of High-Pressure GaN Nucleation Layer on the Performance of AlGaN/GaN HEMTs on Si Substrate
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mishra, U.K.; Likun, S.; Kazior, T.E.; Wu, Y.-F. GaN-Based RF Power Devices and Amplifiers. Proc. IEEE 2008, 96, 287–305. [Google Scholar] [CrossRef]
- Chen, K.J.; Haberlen, O.; Lidow, A.; Tsai, C.L.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si Power Technology: Devices and Applications. IEEE Trans. Electron Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Ishida, M.; Ueda, T.; Tanaka, T.; Ueda, D. GaN on Si Technologies for Power Switching Devices. IEEE Trans. Electron Devices 2013, 60, 3053–3059. [Google Scholar] [CrossRef]
- Geens, K.; Li, X.; Zhao, M.; Guo, W.; Wellekens, D.; Posthuma, N.; Fahle, D.; Aktas, O.; Odnoblyudov, V.; Decoutere, S. 650 V p-GaN Gate Power HEMTs on 200 mm Engineered Substrates. In Proceedings of the2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Raleigh, NC, USA, 29–31 October 2019. [Google Scholar]
- Then, H.W.; Radosavljevic, M.; Koirala, P.; Beumer, M.; Bader, S.; Zubair, A.; Hoff, T.; Jordan, R.; Michaelos, T.; Peck, J.; et al. Scaled Submicron Field-Plated Enhancement Mode High-K Gallium Nitride Transistors on 300mm Si(111) Wafer with Power FoM (RON xQGG) of 3.1 mohm-nC at 40V and fT/fMAX of 130/680GHz. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 35.1.1–35.1.4. [Google Scholar] [CrossRef]
- Amano, H.; Baines, Y.; Beam, E.; Borga, M.; Bouchet, T.; Chalker, P.R.; Charles, M.; Chen, K.J.; Chowdhury, N.; Chu, R.; et al. The 2018 GaN power electronics roadmap. J. Phys. D Appl. Phys. 2018, 51, 163001. [Google Scholar] [CrossRef]
- Egawa, T. Heteroepitaxial Growth and Power Devices Using AlGaN/GaN HEMT on 200 mm Si (111) Substrate. In Proceedings of the 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Monterey, CA, USA, 13–16 October 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Rowena, I.B.; Selvaraj, S.L.; Egawa, T. Buffer Thickness Contribution to Suppress Vertical Leakage Current with High Breakdown Field (2.3 MV/cm) for GaN on Si. IEEE Electron Device Lett. 2011, 32, 1534–1536. [Google Scholar] [CrossRef]
- Choi, Y.C.; Pophristic, M.; Cha, H.-Y.; Peres, B.; Spencer, M.G.; Eastman, L.F. The Effect of an Fe-doped GaN Buffer on off-State Breakdown Characteristics in AlGaN/GaN HEMTs on Si Substrate. IEEE Trans. Electron Devices 2006, 53, 2926–2931. [Google Scholar] [CrossRef]
- Chevtchenko, S.A.; Cho, E.; Brunner, F.; Bahat-Treidel, E.; Würfl, J. Off-state breakdown and dispersion optimization in AlGaN/GaN heterojunction field-effect transistors utilizing carbon doped buffer. Appl. Phys. Lett. 2012, 100, 223502. [Google Scholar] [CrossRef]
- Hsiao, Y.-L.; Chang, C.-A.; Chang, E.Y.; Maa, J.-S.; Wang, Y.-J.; Weng, Y.-C.; Chang, C.-T. Material growth and device characterization of AlGaN/GaN single-heterostructure and AlGaN/GaN/AlGaN double-heterostructure field effect transistors on Si substrates. Appl. Phys. Express 2014, 7, 055501. [Google Scholar] [CrossRef]
- Selvaraj, S.L.; Suzue, T.; Egawa, T. Breakdown Enhancement of AlGaN/GaN HEMTs on 4-in Silicon by Improving the GaN Quality on Thick Buffer Layers. IEEE Electron Device Lett. 2009, 30, 587–589. [Google Scholar] [CrossRef]
- He, X.; Feng, Y.; Yang, X.; Wu, S.; Cai, Z.; Wei, J.; Shen, J.; Huang, H.; Liu, D.; Chen, Z.; et al. Step-Graded AlGaN vs superlattice: Role of strain relief layer in dynamic on-resistance degradation. Appl. Phys. Express 2022, 15, 011001. [Google Scholar] [CrossRef]
- Tajalli, A.; Meneghini, M.; Besendörfer, S.; Kabouche, R.; Abid, I.; Püsche, R.; Derluyn, J.; DeGroote, S.; Germain, M.; Meissner, E.; et al. High Breakdown Voltage and Low Buffer Trapping in Superlattice GaN-on-Silicon Heterostructures for High Voltage Applications. Materials 2020, 13, 4271. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-L.; Chang, E.-Y.; Hsiao, Y.-L.; Huang, W.-C.; Li, T.; Tweet, D.; Maa, J.-S.; Hsu, S.-T.; Lee, C.-T. Growth of GaN film on 150mm Si (111) using multilayer AlN∕AlGaN buffer by metal-organic vapor phase epitaxy method. Appl. Phys. Lett. 2007, 91, 222111. [Google Scholar] [CrossRef]
- Lin, K.-L.; Chang, E.-Y.; Hsiao, Y.-L.; Huang, W.-C.; Luong, T.-T.; Wong, Y.-Y.; Li, T.; Tweet, D.; Chiang, C.-H. Effects of AlxGa1−xN interlayer for GaN epilayer grown on Si substrate by metal-organic chemical-vapor deposition. J. Vac. Sci. Technol. B 2010, 28, 473–477. [Google Scholar] [CrossRef]
- Fritze, S.; Drechsel, P.; Stauss, P.; Rode, P.; Markurt, T.; Schulz, T.; Albrecht, M.; Bläsing, J.; Dadgar, A.; Krost, A. Role of low-temperature AlGaN interlayers in thick GaN on silicon by metalorganic vapor phase epitaxy. J. Appl. Phys. 2012, 111, 124505. [Google Scholar] [CrossRef]
- Dadgar, A.; Hempel, T.; Bläsing, J.; Schulz, O.; Fritze, S.; Christen, J.; Krost, A. Improving GaN-on-silicon properties for GaN device epitaxy. Phys. Status Solidi C 2011, 8, 1503–1508. [Google Scholar] [CrossRef]
- Hertkorn, J.; Brückner, P.; Thapa, S.; Wunderer, T.; Scholz, F.; Feneberg, M.; Thonke, K.; Sauer, R.; Beer, M.; Zweck, J. Optimization of nucleation and buffer layer growth for improved GaN quality. J. Cryst. Growth 2007, 308, 30–36. [Google Scholar] [CrossRef]
- Selvaraj, J.; Selvaraj, S.L.; Egawa, T. Effect of GaN Buffer Layer Growth Pressure on the Device Characteristics of AlGaN/GaN High-Electron-Mobility Transistors on Si. Jpn. J. Appl. Phys. 2009, 48, 121002. [Google Scholar] [CrossRef]
- Wong, Y.-Y.; Chang, E.Y.; Huang, W.-C.; Lin, Y.-C.; Tu, Y.-Y.; Chen, K.-W.; Yu, H.-W. Effects of initial GaN growth mode on the material and electrical properties of AlGaN/GaN high-electron-mobility transistors. Appl. Phys. Express 2014, 7, 095502. [Google Scholar] [CrossRef]
- Fu, Y.; Gulino, D.A.; Higgins, R. Residual stress in GaN epilayers grown on silicon substrates. J. Vac. Sci. Technol. A 2000, 18, 965–967. [Google Scholar] [CrossRef]
- Koleske, D.D.; Wickenden, A.E.; Henry, R.L.; Twigg, M.E.; Culbertson, J.C.; Gorman, R.J. Enhanced GaN decomposition in H2 near atmospheric pressures. Appl. Phys. Lett. 1998, 73, 2018–2020. [Google Scholar] [CrossRef]
- Twigg, M.E.; Henry, R.L.; Wickenden, A.E.; Koleske, D.D.; Culbertson, J.C. Nucleation layer microstructure, grain size, and electrical properties in GaN grown on a-plane sapphire. Appl. Phys. Lett. 1999, 75, 686–688. [Google Scholar] [CrossRef]
- Wickenden, A.; Koleske, D.; Henry, R.; Twigg, M.; Fatemi, M. Resistivity control in unintentionally doped GaN films grown by MOCVD. J. Cryst. Growth 2003, 260, 54–62. [Google Scholar] [CrossRef]
- Weimann, N.G.; Eastman, L.F.; Doppalapudi, D.; Ng, H.M.; Moustakas, T.D. Scattering of electrons at threading dislocations in GaN. J. Appl. Phys. 1998, 83, 3656–3659. [Google Scholar] [CrossRef]
- Wong, Y.-Y.; Chang, E.Y.; Yang, T.-H.; Chang, J.-R.; Ku, J.-T.; Hudait, M.K.; Chou, W.-C.; Chen, M.; Lin, K.-L. The Roles of Threading Dislocations on Electrical Properties of AlGaN/GaN Heterostructure Grown by MBE. J. Electrochem. Soc. 2010, 157, H746–H749. [Google Scholar] [CrossRef]
Electrical Property | ||||||
---|---|---|---|---|---|---|
Rs (Ω/sq) | Ns (1013 cm2/V·s) | Mobility (cm2/V·s) | ||||
Temperature | RT | 77k | RT | 77k | RT | 77k |
A | 503.4 | 167.7 | −0.82 | −0.854 | 1550 | 4370 |
B2 | 491 | 131.2 | −0.832 | −0.827 | 1531 | 5970 |
B3 | 463.5 | 93.5 | −0.8495 | −0.859 | 1586 | 7770 |
B4 | 465.8 | 105.5 | −0.874 | −0.854 | 1536 | 6920 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, Y.-C.; Hsiao, M.-Y.; Lin, C.-H.; Lan, Y.-P.; Chang, E.-Y. Effect of High-Pressure GaN Nucleation Layer on the Performance of AlGaN/GaN HEMTs on Si Substrate. Materials 2023, 16, 3376. https://doi.org/10.3390/ma16093376
Weng Y-C, Hsiao M-Y, Lin C-H, Lan Y-P, Chang E-Y. Effect of High-Pressure GaN Nucleation Layer on the Performance of AlGaN/GaN HEMTs on Si Substrate. Materials. 2023; 16(9):3376. https://doi.org/10.3390/ma16093376
Chicago/Turabian StyleWeng, You-Chen, Ming-Yao Hsiao, Chun-Hsiung Lin, Yu-Pin Lan, and Edward-Yi Chang. 2023. "Effect of High-Pressure GaN Nucleation Layer on the Performance of AlGaN/GaN HEMTs on Si Substrate" Materials 16, no. 9: 3376. https://doi.org/10.3390/ma16093376
APA StyleWeng, Y. -C., Hsiao, M. -Y., Lin, C. -H., Lan, Y. -P., & Chang, E. -Y. (2023). Effect of High-Pressure GaN Nucleation Layer on the Performance of AlGaN/GaN HEMTs on Si Substrate. Materials, 16(9), 3376. https://doi.org/10.3390/ma16093376